Genetics of Quantitative Traits in Dolichos Bean (*Lablab purpureus* L. Sweet) Var. Lignosus

M. S. SHIVAKUMAR, S. RAMESH, M. BYREGOWDA, A. MOHAN RAO AND E. GANGAPPA Department of Genetics and Plant Breeding, College of Agriculture, UAS, GKVK, Bengaluru 560 065

Abstract

Most reported attempts to unravel genetics of quantitative traits (QTs) are based on either first or second degree statistics, but, rarely both. The use of both first and second degree statistics provide the most comprehensive mode of action of genes controlling QTs in crop plants. Genetics of fresh pod yield and its component traits was unravelled using the combination of first and second degree statistics in dolichos bean. The results based solely on first and second degree statistics were contradictory. While, first degree statistics suggested the predominance of genes with dominance effects, second degree statistics indicated the predominance of additive gene effects in controlling the inheritance of most QTs investigated. On the other hand, the combination of first and second degree statistics revealed the importance of both additive and dominance genetic effects in the inheritance of plant height and raceme length. High magnitude of the estimates of additive gene effects [d] and additive genetic variance (σ_A^2) coupled with low magnitude / non-significant dominance gene effects [h] and non-significant dominance genetic variance (σ_D^2) suggested high frequency of increasing effect genes controlling the inheritance of dry pods plant⁻¹, dry pod weight plant⁻¹ and dry seed weight plant⁻¹. Bi-parental mating in F₂ generations before selection is suggested to reduce dominance genetic effects to increase the effectiveness of selection for plant height and raceme length. Simple selection on the basis of F₃ family means is expected to result in rapid genetic gain in dry pods plant⁻¹, dry pod weight plant⁻¹ and dry seed weight plant⁻¹.

DOLICHOS bean (Lablab purpureus L. Sweet) is one of the most ancient legume crops known for its food (Ayyangar and Nambiar, 1935; Vishwanath et al., 1971) and fodder (Magoon et al., 1974) values. Dolichos bean var. Lignosus is predominantly produced for immature beans for use as a vegetable in southern parts of Karnataka state in India (Vishwanath et al., 1971; Shivashankar and Kulkarni, 1989). It is predominantly a self-pollinated crop (Ayyangar and Nambiar, 1935) with 2n=2x=22 chromosomes (She and Jiang, 2015) and a genome size of 367 Mbp (Iwata et al., 2013). Pedigree selection is the most commonly used method of handling segregating generations derived from crosses involving deliberately selected parents to develop high yielding pure-line varieties in dolichos bean. Effectiveness of breeding pure-line varieties hinges on precise knowledge on relative magnitudes of genetic variation and contribution of nongenetic sources. To elicit such genetic information, it is necessary to conceive the genetic model appropriate to the working genetic material that is intended for use in developing pure-line varieties.

Genetics of productivity per se traits could be unraveled at first and second degree statistics levels. Developing and testing the digenic epistasisindependent (additive-dominance model) and epistasisinclusive models are the popular method of unraveling genetics of productivity per se traits at first degree statistics level (popularly known as generations mean analysis). Translating covariance of full-sib and halfsibs produced by diallel (Griffing, 1956) and line × tester mating designs (Kempthorne, 1957) into components of genotype variance and / or biometrical genetic analysis of progenies derived from standard triple test cross (TTC) (Kearsey and Jinks, 1968) and simplified TTC designs (Jinks et al., 1969) are the most commonly used approaches to unravel the genetics of productivity per se traits at second degree statistics level. The reported literature indicates the use of either first degree or second degree statistics-based approaches and rarely both for genetic analysis of quantitative traits in crop plants. However, analysis of first and second degree statistics are not mutually exclusive alternatives, but, are genetically complementary to each other

(Mather and Jinks, 1982; Kearsey and Pooni, 1996). Joint application of both the approaches provides complementary and comprehensive information about genetic control of quantitative traits (Kearsey and Pooni, 1996).

However, such studies have not yet been attempted in dolichos bean. Under these premises, the present study was carried out with an objective to unravel, interpret and discuss dolichos bean breeding implications of genetic parameters estimated based on first and second degree statistics.

$M {\rm ATERIAL} \ {\rm AND} \ M {\rm ETHODS}$

Basic genetic material and development of experimental material : The basic genetic material for the study consisted of three pairs of genotypes (1) P₁ (HA-10-8) and P₂ (RIL 3-180); (2) P₁ (HA-11-3) and P_2 (RIL 3-180); and (3) P_1 (FPB 21) and P_2 (RIL 3-180) contrasting for pod yield and its component traits (Keerthi et al., 2016) (Table I). These were crossed to obtain three F_1 s [(HA-10-8 × RIL 3-180), (HA-11- $3 \times \text{RIL} 3-180$ and (FPB $21 \times \text{RIL} 3-180$)] during 2013 rainy season. The plants of the three F_1 's were grown and selfed during 2013 post-rainy season. F₂ population derived from the three F_1 's along with P_1 , P_2 and F_1 's were grown in 2014 rainy season at the experimental plot of the Department of Genetics and Plant Breeding (GPB), University of Agricultural Sciences (UAS), Bengaluru, India. The experimental plot is located at an altitude of 930 m above mean sea level at 12° 58' North and 77°35' East latitude and longitude, respectively. A total of 160, 155 and 180 F,

TABLE I

Pedigree of the parents of the three crosses used as experimental material in dolichos bean

Parent	Pedigree
HA-10-8	HA $4 \times GL 153$
HA-11-3	HA $4 \times GL$ 127
FPB 21	Unknown
RIL 3-180	HA 4 × CPI 31113

plants derived from HA-10-8 × RIL 3-180; HA-11-3 \times RIL 3-180; and FPB 21 \times RIL 3-180 crosses, respectively could be maintained. The selfed seeds from the parents and 10 F₁'s (to raise F₂ plants subsequently) and 30 random F_2 plants (to raise F_3) families subsequently) derived from the three crosses were collected, dried and stored in -20°C. A part of the seeds collected from F_2 plants derived from the three crosses were planted in plant-to-row progenies (which constituted F_{2} families) in 2014 post-rainy season. Two random plants from each of the 20 randomly selected F₃ families derived from the three crosses were selfed, seeds were collected, dried and stored in -20°C for subsequently raising F_4 families. Due to poor germination of F₂ seeds derived from HA-11-3 × RIL 3-180 cross, F_3 and hence, F_4 families from this cross could not be raised. The five basic generations $[P_1, P_2, F_1, F_2 \text{ and } F_3 (30 \text{ families})]$ derived from three crosses (HA-10-8 \times RIL 3-180; HA-11-3 \times RIL 3-180; and FPB 21 \times RIL 3-180); and F₄ generation (consisting of $2 \times 20 = 40$ F₄ families) derived from two crosses (HA-10-8 \times RIL 3-180 and FPB 21 \times RIL 3-180) constituted the experimental material.

Evaluation of experimental material : The non-segregating generations P_1 , P_2 and F_1 's of the three crosses were evaluated in a randomized complete block design (RCBD) with two replications in experimental plot of Department of GPB, Bengaluru during 2015 rainy season. The seeds of P_1 , P_2 and F_1 's were sown in a single row of 3 m length. Ten days after sowing, the seedlings were thinned by maintaining intra-row spacing of 0.20 m within a row in each replication. The F_2 plants and 30 F_3 families each derived from the three crosses (HA-10-8 \times RIL 3-180, HA-11-3 \times RIL 3-180 and FPB 21 \times RIL 3-180) and F₄ families each derived from two crosses (HA-10-8 \times RIL 3-180 and FPB 21 \times RIL 3-180) were evaluated in two separate contiguous blocks. The seeds of the F₂ plants were sown in 20 rows. Ten days after sowing, seedlings were thinned maintaining 10 plants in each row with intra-row spacing of 0.20 m and 0.45 m between rows. At the time of recording data, there were 187, 191 and 194 F₂ plants derived from HA-10-8 \times RIL 3-180, HA-11-3 \times RIL 3-180 and FPB 21 \times RIL 3-180, respectively. Each of the 30 F_3 and 40 F_4 families were grown in a single row of 2 m length and 10 plants were maintained in each row with intra-row spacing of 0.20 m and 0.45 m between rows. Data were recorded on five randomly selected plants in P_1 , P_2 and F_1 , all F_2 plants and 5 randomly selected plants from each F_3 and F_4 families on nine quantitative traits (Table II) based on dolichos bean descriptors (Byregowda *et al.*, 2015).

Statistical analysis of data :Mean of the data recorded on five plants in P_1 , P_2 , F_1 and data recorded on individual F_2 , F_3 and F_4 plants were used for the following statistical analysis.

Estimation of first degree statistics-based gene effects : First degree statistics-based gene effects were estimated using the following perfect-fit solutions based on five parameter model (Hayman, 1958).

Statistical significance of gene effects was examined using 't' test (Mather and Jinks, 1982).

Estimation of second degree statistics-based genetics (components of genotypic variation)

Additive genetic variance (σ_A^2) : The σ_A^2 was estimated using observed and expected mean sum of

squares (MSS) of analysis of variance (ANOVA) of F₃ families (Table III) (van Ooijen, 1989).

Dominance genetic variance (σ_D^2) : The σ_D^2 was estimated using observed and expected MSS of ANOVA of F₄ families (Table IV) (Kearsey and Pooni, 1996). The analysis of quantitative trait data of F₄

$$\begin{aligned} &[\hat{m}] = \overline{F}_{2} \\ &[\hat{d}] = 1/2(\overline{P}_{1} - \overline{P}_{2}) \\ &[\hat{h}] = 2/3\overline{F}_{1} - 2\overline{F}_{2} - 8/3\overline{F}_{3} \\ &[\hat{i}] = \overline{P}_{1} - \overline{F}_{2} + 1/2\overline{P}_{1} - 1/2\overline{P}_{2} + 1/2[d] - 1/4[l] \\ &[\hat{l}] = 8/3\overline{F}_{1} - 8\overline{F}_{2} + 16/3\overline{F}_{3} \end{aligned}$$

families results in 'nested' or hierarchical' ANOVA. Thus, total variability among F_4 progenies was partitioned into "between F_2 groups", "between F_3 groups within F_2 groups" and "between F_4 individuals within F_3 groups" (Table IV). The ANOVA of F_4 families provided another source of estimate of σ_A^2 .

TABLE II

Procedure of recording data on nine quantitative traits in dolichos bean

Trits	Procedure of measurement
Plant height (cm)	The length of 5 randomly selected plants was measured from base of the plant to tip of the plant using standard metric scale and expressed in cm.
Primary branches plant ⁻¹	Number of primary branches on 5 randomly selected plants were counted and averaged.
Racemes plant ⁻¹	Number of racemes borne on 5 randomly selected plants were counted and averaged.
Raceme length (cm)	The length of 5 randomly selected racemes borne on 5 plants was measured using standard metric scale and averaged.
Dry pods raceme ⁻¹	Number of sun-dried pods on 5 randomly selected racemes were counted and averaged.
Dry pods plant ⁻¹	Number of sun-dried pods from 5 randomly chosen plants were counted and averaged.
Dry pods yield plant ⁻¹ (g)	Sun- dried pod yield of 5 randomly chosen plants were weighed in grams and averaged.
Dry seed yield plant ⁻¹ (g)	Sun- dried seeds shelled from sun-dried pods borne on 5 randomly selected plants are weighed in grams and averaged.
100-dry seed weight (g)	100 sun-dried seeds were weighed and expressed in grams.

Source	Degrees of freedom	Observed Mean sum of squares (MSS)	Expected MSS
Between families	f-1	MS_{b}	$s_w^2 + ns_b^2$
Within families	f(n-1)	MS_{w}	s_w^2

TABLE IIIStricture of analysis of F_3 families in dolichos bean

Where, f= Number of F_3 families; n= Number of plants within a family

As "between F_3 families" mean square was significant, σ_A^2 were estimated assuming absence of σ_D^2 (dominance genetic variance) using following formulae (van Ooijen, 1989).

 $\sigma_{b=}^{2}MS_{b} - MS_{w}/n =$ Between F₃ family variance

 $\sigma^2_{w=}MS_{w=}$ Within F₃ family variance

 $\sigma^2_{A=}\sigma^2_{b}$

 $\sigma_{e=}^2 \sigma_w^2 - 1/2 \sigma_A^2$

Where, $\sigma_{e=}^2$ variance due to non-genetic sources.

TABLE IV

C .	0	1	•	•	CT	<i>c</i> .	1.	•	1	1 • 1	1
Structure	nt	anal	11010	varianco	ot H	tam	1100	111	do	Inchas	hoan
SITUCIUTE	$\mathcal{O}I$	unui	vois	variance		iunii	ues	III	uoi	uuuu	o bean
	I				I A .						

Source	Degrees of freedom	Observed Mean sum of squares (MSS)	Expected MSS
Between F_2 groups	n-1	MS ₁	$s_{3}^{2} + rs_{2}^{2} + n'rs_{1}^{2}$
Between F_3 groups within F_2 groups	n(n'-1)	MS ₂	$s_{3}^{2} + rs_{2}^{2}$
Between F_4 individuals within F_3 groups	nn'(r-1)	MS ₃	s_{3}^{2}

Where n = Number of F_2 groups

n' = Number of F_3 groups within each F_2 group

r= Number of individuals in F_4

 $\sigma_{A}^{2}, \sigma_{D}^{2}$ and environmental variance (σ_{e}^{2}) were estimated by solving following equations in σ_{1}^{2} and σ_{2}^{2} and σ_{3}^{2}

$$\sigma_{1}^{2}(MS_{1} - MS_{2})/n'r; \sigma_{2}^{2}(MS_{2} - MS_{3})/r$$

$$\sigma^{2}_{1=} \sqrt[1]{2} \sigma^{2}_{A} + 1/64 \sigma^{2}_{D}; \sigma^{2}_{2=\frac{1}{4}} \sigma^{2}_{A} + 1/32 \sigma^{2}_{D}$$

$$\sigma_{3=1/2}^{2} \sigma_{A}^{2} + 1/16 \sigma_{D}^{2} + \sigma^{2}$$

Phenotypic variance (σ_p^2) was estimated as, $\sigma_p^2 = \sigma_A^2 + \sigma_{D+}^2 \sigma_e^2$, Where, $\sigma_e^2 = \sigma_w^2 - \frac{1}{2} \sigma_A^2$; $\sigma_w^2 = MS_2$

Where, $\sigma_{e=}^{2}$ variance due to non genetic sources.

Interpretation of mode of action of genes based on the combinations of first and second degree statistics-based parameters

Based on the combinations of the magnitude and direction of the estimates of additive genetic effects [d] and additive genetic variance (σ_A^2) and dominance genetic effects (h) and dominance genetic variance (σ_D^2), the results are interpreted (Kearsey and Pooni, 1996) as indicated in Table V and Table VI, respectively.

RESULTS AND DISCUSSION

First degree statistics-based genetics : Additive-dominance (A-D) model was inadequate to explain the expression of all the traits except plant height in HA 10-8 × RIL 3-180 and FPB 21 × RIL 3-180 and for primary branches plant⁻¹ in HA 10-8 × RIL 3-180 and HA 11-3 × RIL 3-180 as indicated by the significance of joint-scaling test (Table VII). Pathak *et al.* (2014) in mung bean detected non-adequacy of A-D model in the inheritance of most of the traits. Non-adequacy of A-D model in the present study could be attributed to non-inclusion of parameters specifying digenic epistasis and / or genotype × environment interaction. However, in the present study only parameters specifying digenic epistasis were included in the model and were estimated and interpreted (Mather and Jinks, 1982; Kearsey and Pooni, 1996).

TABLE V

Interpretation based on additive genetic effects (d) and additive genetic variance (σ_A^2) in dolichos bean

Additive genetic effects (d)	Additive genetic variance (6^{2}_{A})	Interpretation
Small and non-significant	Large and significant	Dispersion of increasing and decreasing alleles between parents hence mutual cancellation of effects of increasing and decreasing alleles
Large and significant	Large and significant	Prevalence of large additive gene effects
Large and significant	Small and non-significant	Effects of individual gene controlling trait are very small.

$\mathsf{TABLE}\,VI$

Interpretation based on combination of dominance genetic effects (h) and dominance genetic variance (ϕ^2_{p}) in dolichos bean

Dominance genetic effects (h)	Dominance genetic variance $(\acute{0}^2_{\ D})$	Interpretation
Significant postive	Significant	Directional dominance for increasing alleles
Significant negative	Significant	Directional dominance for decreasing alleles
Non-significant	Significant	Ambi-directionaldominance
Non-significant	Non-significant	No dominance
Significant, small	Non-significant	Low dominance

	bean
	dolichos
	crosses in
	in three
	ng traits
E VII	contributi
TABI	and its
	od yield
	or dry p
	effects f
	of gene
	stimates
	Ē

Adequacy of additive Dominance (A+D) Not Adequate model Adequate Adequate Adequate Adequate Probability 0.00 0.27 0.35 0.10 0.39 0.00 0.02 0.00 0.04 0.00 00.0 0.00 00.0 0.00 00.C 00.C 00.C 0.03 0.00 00.C 00.C 0.04 00.C 00.C 00.C 00.C 0.00 -2 Statistic 2.55 2.05 32.72 17.58 2.33 19.59 6.29 54.18 6.07 12.18 46.66 6.27 62.94 2.98 67.37 23.12 38.93 61.66 26.34 26.24 7.61 12.05 19.67 13.225 38.71 51.385 50.911 4.55**±0.89 $-0.82^{\pm0.37}$ 5.28**±0.58 $24.33^{**} \pm 4.13$ $5.97^{**} \pm 2.69$ $84^{**} \pm 0.19$ $1.40*\pm0.66$ $4.29^{**\pm0.59}$ 3.28**±0.33 25.73**±2.68 $28.62^{*\pm 3.30}$ $24.61^{**} \pm 3.23$ $2.99^{**} \pm 0.36$ $2.53^{**} \pm 0.34$ $3.21^{**\pm 2.14}$ $4.07^{*}\pm 3.22$ $9.66^{*\pm3.20}$ $0.60^{*}\pm 0.21$ -0.29 ± 0.34 $5.89 ** \pm 0.67$ $6.81^{*\pm0.84}$ 25.46**±4.21 $23.77^{**} \pm 3.71$ $9.64^{**} \pm 3.01$ $23.01^{**} \pm 4.09$ $2.80^{**} \pm 0.24$ $2.62^{**} \pm .477$ ŝ -0.17 ± 0.19 $6.82^{**} \pm 2.46$ $-1.91^{**} \pm 0.16$ $-9.30^{**\pm 2.18}$ $.9.58^{**\pm1.52}$ 0.67**±2.17 0.14 ± 0.15 $0.66^{**} \pm 0.53$ $0.61^{**\pm0.22}$ $-1.33^* \pm 0.53$ -0.26 ± 0.53 -0.30 ± 0.23 $-4.44^{*}\pm 0.60$ $-2.48^{*}\pm 0.52$ $-3.21^{*}\pm 0.133$ 0.34 ± 0.322 $-7.90^{*\pm 2.18}$ $-5.70^{*\pm1.89}$ 5.75*±2.58 $-8.26^{**} \pm 1.94$ $10.68^{**} \pm 1.63$ $-6.34^{**} \pm 2.3$ $-7.88^{**} \pm 1.54$ 2.08 ± 1.93 $1.73^{**} \pm 0.143$ $2.00^{**} \pm 0.11$ -0.39 ± 0.71 ŝ 54.88**±1.42 $2.5^{*\pm 0.09}$ 2.43 ± 0.17 $3.04^{*}\pm 0.15$ $3.20^{**\pm0.43}$ $8.12^{**} \pm 0.18$ $3.57^{*\pm0.16}$ 6.55**±0.12 8.98**±1.85 14.71**±1.59 $16.56^{**\pm2.20}$ $16.9^{**} \pm 2.82$ $13.87^{**} \pm 2.2$ $5.42^{**} \pm 2.19$ $9.41^{**} \pm 5.29$ $17.00^{**} \pm 0.15$ $55.20^{*\pm1.50}$ $6.52^{**} \pm 0.43$ $6.41^{**\pm0.32}$ $9.98^{**\pm0.40}$ 9.66**±0.27 $3.80^{*}\pm 0.30$ $7.96^{**} \pm 1.87$ $20.45^{**} \pm 1.55$ 50.73**±1.61 $6.99^{**} \pm 0.131$ $17.20^{**} \pm 0.11$ ĩñ HA 11-3× RIL 3-180 HA 11-3× RIL 3-180 HA 11-3× RIL 3-180 HA 10-8× RIL 3-180 HA 11-3× RIL 3-180 HA 10-8× RIL 3-180 HA 10-8× RIL 3-180 HA 10-8× RIL 3-180 HA 11-3× RIL 3-180 HA 10-8× RIL 3-180 HA 10-8× RIL 3-180 HA 11-3× RIL 3-180 HA 10-8× RIL 3-180 HA 11-3× RIL 3-180 HA 10-8× RIL 3-180 HA 11-3× RIL 3-180 HA 11-3× RIL 3-180 7PB 21× RIL 3-180 PB 21× RIL 3-180 FPB 21 × RIL 3-180 HA 10-8×RIL 3-180 PB 21× RIL 3-180 7PB 21× RIL 3-180 7PB 21× RIL 3-180 FPB 21× RIL 3-180 7PB 21× RIL 3-180 FPB $2 \times RIL 3-180$ Crosses Dry pod weight plant⁻¹ (g) Dry seed weight plant¹ (g) Primary branches plant⁻¹ 100 dry seed weight (g) Plant height (cm) Raceme length (cm) Dry pods raceme⁻¹ Dry pods plant⁻¹ Traits Racemes plant⁻¹

** Significant (a) P = 0.01

* Significant (a) P = 0.05;

M. S. SHIVAKUMAR *et al*.

The additive effect of genes reflects those effects which are expected to be manifested in a genotype to which the genes are being substituted for their alternate forms / alleles (Mather and Jinks, 1982; Kearsey and Pooni, 1996). Significant but low magnitude or nonsignificant additive genetic effects in the inheritance of most of the traits in three crosses (Table VIII) could be attributed to genes with either low magnitude of additive effects or those with different degrees of nullifying increasing and decreasing effects (Mather and Jinks, 1982; Kearsey and Pooni, 1996). First degree statistics is valuable for detection and estimation of additive, dominance and epistatic gene effects. However, it does have limitations. Distribution of increasing and decreasing effect genes between the parents causes serious bias to the estimates of additive and additive × additive gene effects. However, dominance [h] and dominance × dominance [l] gene effects are independent of the degree of gene distribution due to which the combined estimates of [h] and [l] could be considered to be the best representative of sign and magnitude of individual h's and l's, respectively. Hence, practically [h] and [l] are the only components which can safely be used to determine the type of epistasis may have influence on the observed per se performance of generations for quantitative traits (Mather and Jinks, 1982; Kearsey and Pooni, 1996).

Significant [h] and positive [l] suggested possible involvement of dominant decreasing effect genes displaying duplicate digenic epistasis. On the other hand, the traits such as primary branches plant⁻¹ and dry pods plant⁻¹ in FPB 21 × RIL 3-180 and raceme length in HA 10-8 \times RIL 3-180 were controlled by dominant increasing effect genes displaying duplicate digenic epistasis as indicated by positive and negative estimates of [h] and [l], respectively. Thus, first degree statistics-based components of generation means suggest predominance of genes with dominance and dominance-based effects in the inheritance of most of the traits investigated. These results are in agreement with those reported by Rahman et al. (1999) and Desai et al. (2013). The estimates of [d], [h], [i] and [l] which are based on first degree statistics pose serious limitations on the interpretation due to internal cancellation of effects of genes in positive and negative direction. Thus, the estimates of genetic components of generation means are most often under estimated. This is especially true as these estimates are based on data obtained from highly selected set of parents where gene dispersion may not be an unusual phenomenon (Kearsey and Pooni, 1996). However, the estimates of variances (second degree statistics) arising from additive, dominance and di-genic epistatic effects of genes are not affected by internal cancellation of gene effects in positive and negative direction (Mather and Jinks, 1982; Kearsey and Pooni, 1996).

Second degree statistics-based genetics : In the absence of backcross generations, it is not possible to estimate additive genetic variance (σ_A^2) and dominance genetic variance (σ_{D}^{2}) . However, while analysis of variance of F₃ families provides unbiased estimates of σ_{A}^{2} that of F_{4} families provide unbiased estimate of both σ_{A}^{2} and σ_{D}^{2} Analysis of variance of F_{3} families revealed highly significant mean squares attributable to 'between F₃ families' for all the quantitative traits except for raceme length and dry pods raceme⁻¹ in HA 10-8 \times RIL 3-180 and for dry pods raceme⁻¹ in FPB 21 × RIL 3-180 (Tables IX A & IX B). The estimates of $\sigma^2_{\ A}$ were high for most of the quantitative traits in FPB 21 × RIL 3-180 compared to those in HA 10-8 \times RIL 3-180 and HA 11-3 \times RIL 3-180 (Table X). Analysis of variance of F_4 families revealed highly significant mean squares attributable to 'between F₂ groups' for all the quantitative traits in HA 10-8 × RIL 3-180 and FPB 21 × RIL 3-180. Mean squares attributable to 'between F₃ groups within F₂ groups' was significant for plant height, raceme length and 100 dry seed weight HA 10-8 \times RIL 3-180 and FPB 21 \times RIL 3-180 (Tables XI A and XII B). The estimates of σ^2_{A} were higher than σ^2_{D} for all the quantitative traits in both the crosses (Table XII). Das et al. (2014), Keerthi et al. (2015) and Chandrakant et al. (2015) also documented the predominance of additive genetic variance in controlling most of the quantitative traits in dolichos bean. Thus, contrary to first degree statistics (which revealed predominance of dominance genetic effects), second degree statistics revealed predominance of genes with additive effects. Thus, inferences solely based on either first or second degree statistics-based mode of action of genes controlling target traits are most often mislead. The

~		\$			T		
Traits	Crosses	[iji]	ß)	્યુ	<u>(</u>]	l	Type digenic epistasis
Plant height (cm)	HA 11-3 \times RIL 3-180	52.54** ±4.02	$12.96^{**} \pm 2.22$	-19.38 ± 17.23	5.51 ± 4.59	$44.46^{**} \pm 14.37$	DEBDDEG
Primary branches plant-1	$FPB~21\times RIL~3\text{-}180$	$-2.07^{**} \pm 0.13$	-0.2 ± 0.15	$15.51^{**}\pm0.8$	$4.67^{**} \pm 0.207$	$-10.63^{**} \pm 0.76$	DEBDIEG
Racemes plant ⁻¹	HA 10-8 \times RIL 3-180	$7.11^{**} \pm 1.53$	$-2.24^{**} \pm 0.54$	-7.28 ± 5.34	1.89 ± 1.62	$14.06 ** \pm 3.99$	DEBDDEG
	$FPB~21\times RIL~3\text{-}180$	$8.32^{**} \pm 0.69$	0.20 ± 0.54	-5.21 ± 3.35	$-3.92^{**} \pm 0.88$	4.29 ± 2.88	DEBDDEG
	HA 11-3 \times RIL 3-180	$4.51^{**} \pm 0.75$	$2.70^{**} \pm 0.97$	-6.11 ± 3.23	$2.78^{*} \pm 1.22$	$11.40^{**} \pm 2.82$	DEBDDEG
Raceme length (cm)	HA 10-8 \times RIL 3-180	$10.19^{**} \pm 0.56$	$-0.62^{**} \pm 0.23$	$9.04^{**} \pm 3.00$	$-4.41^{**} \pm 0.61$	$-12.41^{**} \pm 2.61$	DEBDIEG
	$FPB~21\times RIL~3\text{-}180$	$11.30^{**} \pm 0.80$	$-6.29^{**} \pm 0.69$	-6.47 ± 3.61	1.75 ± 1.06	$14.41^{**} \pm 3.12$	DEBDDEG
	HA 11-3 \times RIL 3-180	$16.83^{**} \pm 1.28$	$5.89^{**} \pm 0.99$	-8.66 ± 5.00	$-4.18^{**} \pm 1.62$	$11.29^{**} \pm 3.96$	DEBDDEG
Dry pods raceme ⁻¹	HA 10-8 \times RIL 3-180	$4.09^{**} \pm 0.33$	$-0.76^{**} \pm 0.28$	-0.59 ± 1.41	0.14 ± 0.43	$3.94^{**} \pm 1.20$	DEBDDEG
	$FPB~21\times RIL~3\text{-}180$	$6.42 ** \pm 0.57$	$-3.36^{**} \pm 0.13$	$-6.81^{**} \pm 2.21$	0.42 ± 0.59	$8.95^{**} \pm 1.89$	DEBDDEG
	HA 11-3 \times RIL 3-180	$6.28^{**} \pm 0.68$	0.64 ± 0.46	$-6.34^* \pm 2.54$	$-2.16^{**} \pm 0.82$	$10.26^{**} \pm 2.07$	DEBDDEG
Dry pods plant ⁻¹	HA 10-8 \times RIL 3-180	$24.92^{**} \pm 5.01$	$-10.00^{**} \pm 2.87$	$,-4.91 \pm 17.88$	-2.42 ± 5.78	25.99 ± 13.52	DEBDDEG
	$FPB21\times RIL3\text{-}180$	-6.011 ± 3.97	$-13.60^{**} \pm 2.23$	$100.62^{**} \pm 18.78$	$31.21^{**} \pm 4.55$	-47.81**± 15.95	DEBDIEG
	HA 11-3 \times RIL 3-180	$25.06^{**} \pm 4.10$	$18.50^{**} \pm 4.59$	-31.02 ± 16.94	5.03 ± 6.15	$55.36^{**} \pm 14.29$	DEBDDEG
Dry pod weight plant ¹ (g)	HA 10-8 \times RIL 3-180	$24.16^{**} \pm 4.68$	$-10.55^{**} \pm 2.64$	-9.38 ± 16.66	-3.81 ± 5.33	$32.18^* \pm 13.48$	DEBDDEG
	$FPB~21\times RIL~3\text{-}180$	$44.47^{**} \pm 7.60$	$-10.00^{**} \pm 1.76$	- 64.71** ± 24.77	$-24.00^{**} \pm 80$	$62.90^{*\pm} 18.12$	DEBDDEG
	HA 11-3 \times RIL 3-180	$26.36^{**} \pm 4.64$	$16.12^{**} \pm 4.26$	-30.09 ± 17.72	0.15 ± 6.3	$50.94^{**} \pm 14.40$	DEBDDEG
Dry seed weight plant ¹ (g)	HA 10-8 \times RIL 3-180	$20.89^{**} \pm 4.92$	$-9.24^{**} \pm 3.52$	-11.51 ± 17.71	-4.03 ± 6.05	$31.38^* \pm 14.18$	DEBDDEG
	$FPB~21\times RIL~3\text{-}180$	$35.56^{**} \pm 6.63$	$-8.48^{**} \pm 1.77$	-56.11**±21.27	$-19.46^{**} \pm 6.8$	$54.78^{**} \pm 15.34$	DEBDDEG
	HA 11-3 \times RIL 3-180	$19.75^{**} \pm 3.34$	$14.86^{**} \pm 4.08$	$-31.82^* \pm 12.79$	2.72 ± 5.27	$52.26^{**}\pm10.47$	DEBDDEG
100 dry seed weight (g)	HA 10-8 \times RIL 3-180	$19.34^{**} \pm 0.42$	$-1.55^{**} \pm 0.14$	-3.09 ± 1.73	$-2.79^{**} \pm 0.44$	2.45 ± 1.59	DEBDDEG
	FPB 21 × RIL 3-180	18.95 ± 0.62	-1.8 ± 0.166	-3.29 ± 2.27	-2.15 ± 0.65	3.63 ± 1.79	DEBDDEG
	HA 11-3 \times RIL 3-180	$20.20^{**} \pm 0.87$	$2.00^{**} \pm 0.11$	-1.47 ± 3.16	$-3.20^{**} \pm 0.87$	0.77 ± 2.40	DEBDDEG
DEBDDEG-Duplicate epista: DEBDIEG- Duplicate epistas	sis between dominant decrea is between dominant increa:	ising effect genes sing effect genes					

TABLE VIII

Estimates of digenic epistatic effects of traits for which Additive – Dominance model is inadequate in dolichos bean

562

M. S. SHIVAKUMAR *et al*.

\triangleleft
X
3LE
TAB

Source of		Decrees o	J.					Mear	n sum of s	quares					
variation		freedom	5 -	Pla	nt height (cm)		Primary	y branches	plant ⁻¹	Re	comes pla	nt ⁻¹	Recome	es length	plant ⁻¹
Cross	C	$^{\rm C}$	C3	c	°2	C3	c	°2	C3	ں ت	C_2	C	c	C_2	C3
Between F_3 famili	es 22	19	22	394.14**	1082.34**	361.93**	0.63*	3.12**	1.92**	62.45**	68.32**	12.89**	4.98	11.96*	40.11^{**}
Within F ₃ familie:	92	80	92	174.50	254.7	69.60	0.33	0.46	0.93	9.43	9.77	5.46	4.62	6.02	16.85
* Significant @	P = 0.05;	** Sigr	nificant @	P = 0.01 C ₁	: HA 10-8 × R	IL 3-180;	C_2 : FP	B 21 × RII	3-180;	C ₃ : HA 1	$1-3 \times RIL$	3-180			
						TABL	EIXB								
	Anc	ulysis oj	f varia	nce of F_3 fa	milies deriv	ved from 1	thre cro	sses for	quantita	ative tro	uits in de	olichos l	bean		
								Mean sum o	ofsquares						
Source of D variatio	egrees of free	dom		Dry pods raceme- ¹	Dry _I	oods plant ⁻¹	Q	ry pod weigh	ıt plant- ¹ (g)	Dry	seed weight	plant ⁻¹ (g)	10	0 dry seed w	eight (g)

٣	~	
	5	
	1	
	2	
•	2	
	S	
•	Ľ	
•	-	
	2	
	\mathbf{v}	
1	3	
	\sim	
	~	
	9	
1	*~	
	2	
	-	
	-	
	2	
	~	
1	+	
	$_{o}$	
	2	
•	5	
1	1	
	~	
	\sim	
•	2	
1	1	
	2	
	~	
	2	
	じ	
	2	
	1	-
	5	1
	\$	
	2	
	0	
5	1	
		•
	9	
	02	
	2	
	2	
	\sim	
	0	
	~	
	27	
	\sim	
	•	
	é	
	Q	
	5	
	2	
•	~	
1	+-	
	2	
	ш	
	mc	
	non	
ر د	trom	
د -	trom	ر د
ر ب	a trom	ر د
ر ب	ed trom	, ,
C	ed trom	ر د
ر -	ved trom	<i>د</i>
· ·	wed from	<i>د</i>
	rived from	ر د
	erived from	ر د
	erved from	ر د
	derived from	~
	derived from	<i>ہ</i>
· · ·	s derived from	~
· · ·	ess derived from	<i>د</i>
· · ·	es derived from	~
· · ·	les derived from	~
· · · · · · · · · · · · · · · · · · ·	ulles derived from	د
· · · · · · · · · · · · · · · · · · ·	ulies derived from	د
· · ·	nilies derived from	د
	imilies derived from	د
	amilies derived from	د
· · · · · ·	tamilies derived from	
	tamilies derived from	<i></i>
	, tamilies derived from	<i>c c c c c c c c c c</i>
· · · · · ·	f tamilies derived from	د ر ر
	F families derived from	۰ د ر د
	F. tamilies derived from	<i>د</i> و
	of F families derived from	ر د
	of F_{\circ} families derived from	د بر د
	of F families derived from	0 × 0
	e of F, families derived from	د د حرق
	$ce of F_{c}$ families derived from	ر × ر
	ice of F families derived from	0 ~ 0
	nce of F families derived from	0 ~ 0
	ance of F stamilies derived from	0 ~ 0
	ance of F families derived from	0 ~ 0
	rance of F families derived from	د د
	riance of F_{\circ} families derived from	<i>c x c</i>
	ariance of F_{\circ} families derived from	0 × 0
	variance of F_{\circ} families derived from	0 × 0
	variance of F families derived from	د × د
	* variance of F_{\circ} families derived from	0 ~ 0
	of variance of F_{\circ} families derived from	ر د ×ره
	of variance of F_{\circ} families derived from	ر د در
	of variance of F_{\circ} families derived from	0 ~ 0
	s of variance of F_{\circ} families derived from	0 ~ 0
	us of variance of F_{a} families derived from	ر ر
	sis of variance of F_{\circ} families derived from	0 0
	vsis of variance of F_{\circ} families derived from	0 40
	lysis of variance of F_{\circ} families derived from	ر م
	uvsus of variance of F_{a} families derived from	ر د ده
	alysis of variance of F_{\circ} families derived from	ر ر

* * 1387.57 * * 1204.19 ** 390.21* * 1175.61 ** 1228.38 ** 12.06^{**} 7.26 2.49 22 19

26.67**

0.36**

 4.31^{**}

278.54*

1066.51 **

634.69*

538.12*

*

ប

S

ū

C

S

ū

ឌ

 \mathbf{C}^2

ū

C

 $\mathbf{\tilde{C}}$

ū

C

S

ū

ប

S

ū

22

Cross Betwee n F₃ families Within F₃ families

4.21

0.08

1.94

85.52

204.17

121.32

157.36

384.73

201.68

177.26

414.49

208.63

4.70

4.83

1.69

92

80

92

 C_3 : HA 11-3 × RIL 3-180 C_2 : FPB 21 × RIL 3-180; $C_{\rm l};$ HA 10-8 \times RIL 3-180; ** Significant @ P = 0.01* Significant @ P = 0.05;

M. S. SHIVAKUMAR *et al*.

TABLE X

Estimates of additive genetic variance(δ^2_A) for quantitative traits in F_3 populations derived from three crosses in dolichos bean

Traits		Estimates of	ó² _A	
110105	HA 10-8 × RIL 3-180	FPB 21 × RIL 3-180	HA 11-3 × RIL 3-180	
Plant height (cm)	9.55**	41.38**	12.71**	
Primary branches plant ⁻¹	0.01**	0.13**	0.04**	
Racemes plant ⁻¹	2.30**	2.92**	0.32**	
Raceme length (cm)	0.02	0.29*	1.01**	
Dry pods raceme-1	0.03	0.12	0.32**	
Dry pods plant ⁻¹	44.34**	38.05**	9.26**	
Dry pod weight plant ⁻¹ (g)	43.58**	50.14**	16.55**	
Dry seed weight plant ⁻¹ (g)	22.32**	43.11**	8.39**	
100 dry seed weight (g)	0.10**	0.01**	0.97**	

* Significant @ P = 0.05;

** Significant @ P = 0.01

combination of components of means and of variances provides complementary and more comprehensive information on the true nature of genetic control of quantitative traits (Kearsey and Pooni, 1996).

Interpretation of combination of first - and second degree statistic-based genetic parameters: Non-significant and / or significant but low magnitude of additive genetic effect [d] coupled with large σ^2_{A} for plant height in FPB 21 × RIL 3-180 cross indicated dispersion of increasing and decreasing effects genes between parents. Dispersion of increasing and decreasing effects genes reduce the trait means of the genotypes while association increases them. The probability of genes being in dispersion phase could be minimized by random mating in F, genotypes before selecting desired pure-lines (Roy, 2000). Hanson (1959) showed that with F₂ inter-mating, the risk of losing desired alleles is less than with selfing. High magnitude of the estimates of both [d] and (σ_A^2) suggests high frequency of increasing effect genes controlling dry pods plant⁻¹, dry pod weight plant⁻¹ and dry seed weight plant⁻¹. On the other hand, high magnitude of [d] and low magnitude of (σ_{A}^{2}) indicated small effect additive genes controlling raceme length in all the three crosses (Table XIII). Hence, inferences based on the magnitudes of only first degree statistics-based additive gene effects are not advisable, because the distribution of positive and negative gene effects in the parents may result in different degrees of cancellation of effects in the expression of the traits means of generations (Mather and Jinks, 1982; Kearsey and Pooni, 1996). For the same reason, the magnitudes of additive gene effects do not necessarily reflect those of σ^2_{A} . High magnitude of the estimates of $\sigma^{2}_{_{A}}$ indicate long-term genetic gains as they could be exploited through the constellation of desired genes controlling dry pods plant-1, dry pod weight plant-1 and dry seed weight plant⁻¹ in pure-lines. This is because σ_{A}^{2} is fixable by selection and hence it is possible to predict response to selection.

Dominance genetic effect [h] and dominance genetic variance (σ_D^2) : Significant positive [h] and significant δ_D^2 indicated the role of increasing effect genes with directional dominance in controlling the inheritance of plant height in both the crosses (Table XIII). Significant negative estimate of [h] and

X
3LE
LAE

Source of	Dear	ae of freedo				1	Mean sum of :	squares				
variation	10,00	10 CO		Plant height	(cm)	Primary bra	inches plant ⁻¹	Reco	omes plant ⁻¹	Re	scomes lengt	h plant ⁻¹
Crosses	C		2.	 ບົ	C	c	C2	c	C_2			2
Between F_2 groups	19.00	2	1.00 8;	82.98**	612.15**	0.76*	0.92	** 37.89	32.	59** 1	8.94**	8.19**
Between F_3 groups with in F_2 groups	20.00	6	2.00 3.	39.12*	238.95**	0.57	0.55	32.25	20.	82*	8.46**	[1].04**
Between F_4 individuals within F_3 groups	160.00	17	6.00 1	94.69	102.57	0.40	0.35	29.56	11.	65	4.16	4.79
V	nalysis o	f varianc	$e of F_4 fan$	nilies der	TABLE X ived from 1	1B two crosse	25 for quan	<i>utitative tr</i>	aits in dc	olichos bu	ean	
Source of variation	Degree freedc	s of m	Dry I racen	oods ne-1	Dry po plant	sp	Dry pod ' plant ⁻¹	weight (g)	Dry set weight plan	$ed 1t^{-1}(g)$	100 dry see((g)	weight
Crosses Crosses	C	$^{2}{ m C}$	C	$^{2}{ m C}$	C	C_2	C	2 C	C	C_2	C	5 C
Between F_2 groups	19	21	2.79*	4.13**	1115.04**	565.78**	1215.48**	621.07**	582.28**	436.77**	8.73**	12.79**
Between F_3 groups within F_2 groups	20	52	1.94	1.83	575.01	310.48	672.96	294.36	338.85	212.71	4.08*	3.19*
Between F_4 individuals within F_3 groups	160	176	1.49	1.22	435.69	242.75	535.62	199.95	273.75	151.13	1.89	2.22

GENETICS OF QUANTITATIVE TRAITS IN DOLICHOS BEAN VAR. LIGNOSUS

565

 C_2 : FPB 21 × RIL 3-180

** Significant (a) $P = 0.01 C_1$; HA 10-8 × RIL 3-180;

* Significant @ P = 0.05;

M. S. SHIVAKUMAR *et al*.

TABLE XII

Estimates of additive genetic variance (σ_A^2) and dominance genetic variance (σ_D^2) for quantitative traits in F_A populations derived from two crosses in dolichos bean

Traits	HA 10-8×I	RIL 3-180	FPB 21 >	< RIL 3-180
	ó² _A	ó² _D	ó² _A	ó² _D
Plant height (cm)	106.51**	72.22*	76.23**	81.95**
Primary branches plant ⁻¹	0.03*	0.52	0.04**	0.99
Racemes plant ⁻¹	0.78	10.96	0.69**	53.16**
Raceme length (cm)	1.65**	14.33**	0.24**	38.15**
Dry pods raceme ⁻¹	0.11*	1.95	0.45**	0.30
Dry pods plant ⁻¹	106.85**	36.85	50.02**	33.31
Dry pod weight plant ⁻¹ (g)	108.05**	14.55	51.09**	64.53
Dry seed weight plant ⁻¹ (g)	47.55**	36.22	43.33**	47.50
100 dry seed weight (g)	0.96**	0.25*	1.23**	0.18*

* Significant @ P = 0.05;

** Significant (a) P = 0.01

significant estimate of σ_{D}^{2} suggest the involvement of decreasing effect genes displaying directional dominance controlling raceme length in HA 10-8 × RIL 3-180. Selection in F₂ generations derived from three crosses may not be effective in improving genetic gain for plant height and raceme length as dominance and dominance × dominance (non-additive) gene effects are non-fixable. However, selection based on F₂ families is more effective as environmental variation is reduced by working with means and non-additive genetic variation is reduced by inbreeding. For the same reason, heritability of quantitative traits based on F₃ family means is greater than that based on F₂ individuals (Kearsey and Pooni, 1996). Perhaps one or two cycles of bi-parental mating in F₂ generation followed by recurrent selection is advisable with a twin objective of dissipating dominance and enhancing the frequency of genes with increasing effects on the expression of plant height and raceme length (Chandrakant et al., 2015). Bi-parental mating offer additional opportunity for recombination and expression of new blocks of genes which allow the breeders to maximize the progress through selection (Hanson, 1959; Stam, 1977; Weber, 1982; Yonezawa, 1983). Non-significant [h] but significant σ_{D}^{2} was suggestive of the involvement of genes with ambi-directional dominance controlling racemes plant⁻¹ and raceme length in FPB 21 × RIL 3-180 and 100 dry seed weight in two crosses (HA 10-8 × RIL 3-180 and FPB 21 × RIL 3-180). Traits such as primary branches plant⁻¹ dry pods plant⁻¹ dry pod weight plant⁻¹ and dry seed weight plant⁻¹ appeared to be controlled by genes displaying no dominance or low dominance as indicated by non-significant/ significant small [h] and non-significant σ_D^2 . Simple selection is expected to be effective for genetic improvement of above traits.

References

- AYYANGAR, G. N. R. AND NAMBIAR K. K. K., 1935, Studies in dolichos lablab (Roxb.) (L.) - The Indian field and Garden bean. *Proceed. Indian Academy Sci.* 1(12), 857-867.
- Byregowada, M., Gireesh, G., Ramesh, S., Mahadevu, P. and Keerthi. C. M., 2015, Descriptors of dolichos bean (*Lablab purpureus* L.). *J. Food Legumes*, **28** (3), 203-214.
- CHANDRAKANT, RAMESH, S., VAIJAYANTHI, P. V., BYREGOWADA, M., MOHAN RAO, A., KEERTHI, C. M. AND SHIVAKUMAR. M. S., 2015, Impact of bi-parental mating on quantitative traits inter-relationships and frequency of transgressive segregants in dolichos bean (*Lablab*)

	l
	ļ
\sim	
- F 3	
ET.	
1	
<u> </u>	
- 7	
~	
	ļ
-	

Combination of first- and second degree statistics-based genetics of quantitative traits in dolichos bean

	HA 10-8×	RIL 3-180			$FPB21\times R$	IL 3-180		
Traits	First	degree itics	Second c statat	legree ics	First de statis	estee	Second d statati	egree cs
	Additive genetic effects(d)	Dominance genetic effects (h)	${\hat 6}^2_{\ A}$	$\hat{\phi}^2_{\ D}$	Additive genetic effects (d)	Dominance genetic effects (h)	δ^2_{A}	$\hat{0}^2_{\ D}$
Plant height (cm)	- 9.30**±2.18	13.21**±2.14	9.55**	72.22*	-9.58**±1.52	14.07**±3.22	41.38**	81.95**
Primary branches plant ⁻¹	0.14 ± 0.15	$0.60^{*\pm0.21}$	0.01**	0.52	$0.66^{**} \pm 0.53$	$1.84^{**} \pm 0.19$	0.13**	0.99
Racemes plant ⁻¹	$-1.33^{*} \pm 0.53$	5.89 **± 0.67	2.30**	10.96	-0.26±0.53	$1.40^{*\pm0.66}$	2.92**	53.16**
Raceme length (cm)	-0.30 ± 0.23	$2.62^{**} \pm .477$	0.02	14.33**	-4.44**±0.60	$6.81^{*\pm0.84}$	0.29*	38.15**
Dry pods raceme ⁻¹	-0.17±0.19	$3.28^{*}\pm 0.33$	0.03	1.95	- 3.21**±0.133	-0.82*±0.37	0.12	0.30
Dry pods plant ¹	-7.90**±2.18	25.73**±2.68	44.34**	36.85	-5.70**±1.89	28.62**±3.30	38.05**	33.31
Dry pod weight plant ¹ (g)	$-8.26^{**} \pm 1.94$	$23.77^{**} \pm 3.71$	43.58**	14.55	$-10.68^{**} \pm 1.63$	$19.64^{**} \pm 3.01$	50.14**	64.53
Dry seed weight plant ¹ (g)	$-6.34^{**} \pm 2.3$	$23.01^{**} \pm 4.09$	22.32**	36.22	$-7.88^{**} \pm 1.54$	$15.97^{**} \pm 2.69$	43.11**	47.50
100 dry seed weight (g)	$-1.73^{**} \pm 0.143$	$2.99^{**} \pm 0.36$	0.10^{**}	0.25*	$-1.91^{**} \pm 0.16$	$2.53^{**} \pm 0.34$	0.01**	0.18*
* Significant @ $P = 0.05$;	** Si	gnificant $@ P = 0.01$						

GENETICS OF QUANTITATIVE TRAITS IN DOLICHOS BEAN VAR. LIGNOSUS

purpureus L.). *Electronic J. Plant Breed.*, **6**(3), 723-728.

- Das, I., SETH, T., DURWAS, S.V., DUTTA, S., CHATTOPADHYAY, A. AND SINGH, B., 2014, Gene action and combining ability for yield and yield component traits in dolichos bean (*Lablab purpureus* L. var. typicus). SABRAO J. Breed. Genet., 46 (2), 293-304.
- DESAI, D. T., PATIL, A. B., PATIL, S. A. AND GHODKE. U. R., 2013, Diallel analysis for pod yield and its components traits in Vegetable Indian bean (*Lablab purpureus* L.). *African J. Agric. Res.*, **8** (14), 1229-1232.
- GRIFFING, B., 1956, A generalized treatment of diallel crosses in quantitative inheritance. *Heredity* **10**, 31-50.
- HANSON, W. D., 1959, The breakup of initial linkage blocks under selected mating systems. *Genetics*, **44**, 857-868.
- HAYMAN, B. I., 1958, The separation of epistatic from additive and dominance variation in generation means. *Heredity*, **12**, 371-390.
- IWATA, A., GREENLAND, C. M. AND JACKSON. S. A., 2013, Cytogenetics of legumes in the pheseoloid clade. *Plant Genome*, **6**(3), 1-8.
- JINKS, J. L., PERKINS, J. M. AND BREESE. E. L., 1969, A general method of detecting additive, dominance and epistatic variation for metrical traits. II. Application to inbred lines. *Heredity*, 24, 45–57.
- KEARSEY, M. J. AND JINKS. J. L., 1968, A general method of detecting additive, dominance and epistatic variation for metrical traits I. Theory. *Heredity*, 23, 403–09.
- KEARSEY, M. J. AND POONI. H. S., 1996, *The genetical analysis of quantitative traits*, 1st ed. London, UK: Chapman and Hall.
- KEERTHI, C. M., RAMESH, S., BYREGOWADA, M., CHANDRAKANT, VAIJAYANTHI, P. V., SHIVAKUMAR, M. S. AND MOHAN RAO, A., 2015, Epistasis-driven bias in the estimates of additive and dominance genetic variance in dolichos bean (*Lablab purpureus* L.). J. Crop Improv., 29, 542-562.
- KEERTHI, C. M., RAMESH, S., BYREGOWDA, M., MOHAN RAO, A., VAIJAYANTHI, P. V., CHANDRAKANT, N. AND SHIVAKUMAR, M. S., 2016, High yielding vs. low yielding

testers to identify advanced breeding lines for general combining ability in dolichos bean (*Lablab purpureus*). J. Crop Improv., 30 (1): 1-106.

- KEMPTHORNE, O., 1957, An introduction of genetic statistics. pp 468-473. New York, USA: John Willey & Sons Inc.
- MAGOON, M. L., AMAR SINGH, AND MEHRA, K. L., 1974, Improved field bean for dry land forage. *Indian Farming*, **24**(2) 5-7.
- MATHER, K. AND JINKS. J. L., 1982, Biometrical genetics, the study of continuous variation, 3rd ed. pp. 396-403. London, New York: Chapman and Hall.
- RAHMAN, M. A. AND SAAD. M. S., 1999, Estimation of additive, dominance and digenic interaction effects for certain yield characters in *Vigna squipedalis*. *Euphytica*, **114**, 61-66.
- Roy, D., 2000, Plant Breeding-Analysis and exploitation of genetic variation. Narosa Publishing House, New Delhi, India.
- SHE, C. AND JIANG. X., 2015, Karyotype analysis of *Lablab purpureus* (1.) sweet using fluorochrome banding and fluorescence *in situ* hybridization with rDNA probes. *Czech J. Genet. Plant Breed.*, **51**(3), 110–116.
- SHIVASHANKAR, G. AND KULKARNI. R. S., 1989, Field bean [Dolichos lablab (L.), var. Lignosus Prain. Indian Hortic., 34, 24-27.
- STAM, P., 1977, Selection response under random mating and under selfing in the progeny of a cross of homozygous plants. *Euphytica*, **26**, 169-184.
- VAN OOIJEN, J. W, 1989, Estimation of additive genotypic variance with the F_3 of autogamous crops. *Heredity*, **63**, 73-81.
- VISHWANATH, S. R., SHIVASHANKAR, G. AND MANJUNATH, A., 1971, Non season-bound *Dolichos lablab* with new plant type. *Current Sci.*, **40**, 667–668.
- WEBER, W. E., 1982. Selection in segregating generations of autogamous species I, Selection response for combined selection. *Euphytica*, **31**, 493-502.
- YONEZAWA, K., 1983, Practical implications of improving the precision of genotypic assessment in selection a theory. *Euphytica*, **32**, 543-555.

(Received : March, 2016 Accepted : July 2016)

568