Non-chemical Management of Papaya Ring Spot Virus in Papaya (Carica papaya L.)

G. VIJAYALAKSHMI AND N. NAGARAJU

Department of Plant Pathology, College of Agriculture, UAS, GKVK, Bengaluru -560 065 E-mail: vijayalakshmig127@gmail.com

Abstract

The efficacy of different treatments comprising of different cultural and biomolecules against Papaya ringspot virus (PRSV) was tested under field condition. Growing African tall maize as live barrier with silver reflective mulchand soil and foliar application of micronutrients with neem leaf extract (5ml / litre), neem oil (5ml / litre), Kappaphycus alvarezii-1 (4.0 ml / lt), Kappaphycus alvarezii-2 (6.0 ml / lt) and Synthetic Oligo (0.25mg / litre) was found significantly effective in reducing PRSV incidence (86.76%) compared to border crop of African tall maize alone which as record 73.33 per cent disease control and an average yield of 46.23 kg / plant. Among the bio -molecules, Kappaphycusalvarezii-1 has recorded 71.66 per cent disease control with the yield of 41.87 kg / plant. Use of reflective mulch recorded 65.67 per cent disease control with an average yield of 41.57 kg / plant. Spraying with botanicals and biopesticides *viz.*, neemleaf extract and neemoil have recorded 53.33 and 60.00 per cent, respectively. Whereas, untreated control plants showed 100 per cent disease incidence of PRSV.

Keywords: Papaya, papaya ringspot virus, disease control

PAPAYA (*Carica papaya* L.), is considered as an important fruit crop because of its great economic potential. It belongs to the family Caricaceae and species related to *C. papaya* are *C. pentagona*, *C. cauliflora*, *C. pubescens* and *C. stipulate*. Fruits are low in calories and rich in natural vitamins and minerals. Papaya placed first among the fruits for vitamin-C, A, riboflavin, calcium, thiamine, iron, niacin, potassium and fiber. Hundred gram of ripe fruit contain 0.6 g of protein, 0.1 g of fat, 0.5 g of minerals, 0.8 g of fiber, 7.2 g of carbohydrates, 32 kcal of energy, total carotene of 2,740µm and β-carotene of 888µm (Krishna *et al.*, 2008).

Unripe green papaya is also used as vegetable, it contain all other nutrients except carotene. It is also used in salads, pies, sherbets, juices and confections. The fruit is a rich source of latex which contains proteolytic enzymes, papain and chymopapain. Papain is an enzyme that breaks protein and has been commonly used in food, pharmaceutical and cosmetic industries for producing clean singlotions, facial creams and toothpastes. Chymopapain and antioxidant nutrients found in papaya have been found helpful in lowering inflammation and healing burns (Aravind *et al.*, 2013).

Indian domestic demand for papaya has become strong because of sizable population, significant rise

in per-capita income and growing interest for healthier food products (FAOSTAT, 2012). The congenial climatic conditions in India have wider scope for commercial cultivation and export of papaya. The area and production were in increasing trend during late 20th century, but with increased severity of PRSV during the early 21st century it became a major hurdle for growers and a challenge for scientists leading to a heavy toll of the crop. The virus infects plants of all the age groups, early infection gradually lead to complete loss of yield and later infections reduce the yield and quality of fruit. Symptoms such as mild mosaic, mosaic, puckering, mottling, vein clearing, vein

banding, blistering, distortion and shoe strings in severe case appear on leaves after two to three weeks of infection (Plate 1). Oily streaks on petioles, ringspots on leaves and fruits can be observed. In advanced case infected plants appear bushy, back headed, tapering and finally death can also be

Plate 1: Papaya ringspot virus infected papaya plant

noticed. Infected plants flower meagerly and produce malformed fruits with poor taste, market value and keeping quality (Gonsalves, 1994).

The incidence of PRSV is becoming a major limiting factor and is challenging to papaya growers worldwide. Papaya ringspot virus cause heavy loss of 85-90 per cent depending upon the time of infection age of the plant (Usharani *et al.*, 2013). Currently reported management methods like cultural, chemical and biological methods for control of the disease, they are ineffective practically. Keeping in view of the limited work on biological approaches, the different management practices was undertaken.

MATERIAL AND METHODS

In order to evaluate the efficiency of integrated management approach to combat PRSV disease, field experiments were laid in farmer field at Byadarahalli village, Devanahalli taluk of Bengaluru rural district of Karnataka and MRS, Hebbal, Bengaluru during 2015-17. The papaya seedlings of a popular variety viz., Red Lady were raised in 6"x 4"polyethylene covers and maintained in insect proof nylon mesh of 40 x gauge. Forty fivedays old seedlings were then transplanted in the main field by maintaining a spacing of 6'x6'. The recommended package of practices were followed till the end of experiment. Eleven different treatments were imposed and evaluated by using a simple RCBD design with three replications. The observations on plant height, disease incidence, number and weight of fruits were recorded.

Treatments imposed were as follows

- T-1: Growing African tall maize as live barrier: Two months before transplanting the papaya seedlings, "African tall maize" was grown densely all around the treatment plot and also in between the rows of papaya as live a barrier in the ratio of 1:1.
- T-2: Growing papaya with silver reflective mulch: Forty five days old Red Lady seedlings were grownin row covered with silver reflective mulch which was spread above each papaya row to repel the aphids.

T-3: Soil and foliar application of micronutrients: Micronutrients like Zinc, Boron, Iron and Manganese were applied at monthly intervals.

Micronutrient	Soil applica- tion dose	Foliar spray dose
Zinc	10 kg/ha	0.5%
Boron	10 kg/ha	0.5%
Iron	15 kg/ha	1.0%
Manganese	04 kg/ha	0.5%

T-4: Foliar application of micronutrients: Micronutrients like Zinc, Boron, Iron and Manganese were applied at monthly intervals.

- T-5: Spray with neem leaf extract @ 5ml /litre: Preparation of neem leaf extract: The neem leaves were covered with water at a ratio of one kilogram of leaves to five liters of water and kept for overnight. The next day leaves were grounded and supernatant was collected and used for spraying.
- T-6: Spraying with neem oil @ 5ml / litre: Neem oil @ 5ml / litre was sprayed at monthly intervals.
- T-7: Spraying with *Kappaphycusalvarezii-1*: Sea weed *Kappaphycusalvarezii-1*(LBD) was sprayed @ 4ml / litre at monthly intervals.
- T-8: Spraying with *Kappaphycus alvarezii*-2: Sea weed *Kappaphycus alvarezii*-2 (LBS) @ 6ml/ litrewas sprayed at monthly intervals.
- T-9: Spraying with Synthetic Oligo(SEVI)@ 0.25mg/ litre:SEVI @ 0.25mg/litre was sprayed at monthly intervals.
- T-10:Combination of all treatments:All the above mentioned treatments were combined.
- T-11: Untreated control: Forty fivedays old papaya seedlings of "Red lady" were planted in the main field. These plants were maintained untreated without imposing any of the above treatments.

Calculation of Per cent disease incidence

Per cent disease incidence was calculated by recording number of plants infected and total number of plants in a plot.

The per cent disease reduction over control was calculated by using the formula given by Vincent (1947).

Per cent disease reduction =
$$\frac{(C-T)}{C}$$
 X 100

Where,

C = Per cent disease in control

T = Per cent disease in treatment

Statistical analysis : The field experimental data was analyzed statistically by Fischer's method of analysis of variance as given by Panse and Sukhatme (1967). The level of significance used in 'F' test was P=0.01. Critical difference was worked out wherever 'F' test was significant.

RESULTS AND DISCUSSION

The popular variety of papaya viz., Red Lady was selected to test efficacy of different treatments under field condition against Papaya ringspot virus. Significant difference in disease control, plant height and yield was observed in all the treatments compared with untreated control. Among the different treatments, T_{10} (Growing African tall maize as live barrier with silver reflective mulch and soil and foliar application of micronutrients with neem leaf extract (5ml /litre), neem oil (5ml / litre), Kappaphycus alvarezii-1 (4.0 ml / lt), Kappaphycus alvarezii-2 (6.0 ml / lt) and Synthetic Oligo (0.25mg / litre) has found significantly efficient in reducing PRSV with 86.76 per cent disease control (Table I and Plate 2) with an average plant height and yield of 4.40 feet (Fig. 2) and 48.52 kg per plant respectively (Table II).

Growing papaya with African Tall maize as live barrier alone (T1) has recorded 73.33 per cent disease

TABLE I

Effect of different treatments on disease incidence of papaya ringspot virus in papaya under field conditions.

Treatments	Percent Disease Incidence (%)	Disease control over treateed (%)	
T1 = Border crop with African tall maize	26.67	73.33	
T2 = Reflective mulch	34.33	65.67	
T3 = Soil and foliar spray of micronutrients	41.00	59.00	
T4 = Foliar spray of micronutrients	33.33	66.67	
T5 = Spray with neem leaf extract @ 5ml / litre	46.67	53.33	
T6 = Spray with neem oil @ 5ml / litre	40.00	60.00	
T7 = Spray with <i>Kappaphycus alvarezii</i> -1 @ 4ml / litre	28.37	71.66	
T8 = Spray with Kappaphycus alvarezii–2 @ 6ml / litre	39.23	60.77	
T9 = Spray with Synthetic Oligo $@ 0.25mg/litre$	28.67	71.33	
T10 = Combination of all the above treatments	13.33	86.67	
T11 = Control	100.0		
S.E.M	0.215		
CV	23.94		
CD @ 1%	0.621		

1	reatments	Average plant height (feet)*	No. of fruits per plant *	Average yield per plant (kg)*	Total Yield / ac (tons)	Yield increase over control (%)
T1=	Border crop with African tall mai	ze 3.86	8.67	46.23	57.04	56.58
T2=	Reflective mulch	3.49	6.00	41.57	51.29	51.72
T3=	Soil and foliar spray of micronutrients	3.59	7.00	45.20	55.77	55.59
T4=	Foliar spray of micronutrients	3.37	6.67	40.87	50.43	50.89
T5=	Spray with neem leaf extract @ 5ml/litre	3.39	6.64	42.47	52.41	52.74
T6=	spray with neem oil @ 5ml/litre	3.56	6.93	41.10	50.72	51.17
T7=	Spray with <i>Kappaphycusalvare</i> -1@4ml/litre	<i>zii</i> 3.48	7.43	41.87	51.66	52.06
T8=	Spray with <i>Kappaphycusalvare</i> -2 @ 6ml/litre	<i>zii</i> 3.64	7.67	43.77	54.01	54.15
T9=	Spray with Synthetic Oligo @ 0.25mg/litre	3.34	6.67	40.90	50.47	50.92
T10=	Combination of all the above treatments	4.40	9.67	48.52	59.87	58.63
T11=	Control	3.00	3.3	20.07	24.76	
	S.E.M	0.197	0.593	0.773		
	CV (%)	9.460	14.37	3.256		
	CD @ 1%	0.5819	1.749	3.112		

 TABLE II

 Effect of different treatments on growth and yield parameters of PRSV infected

 papaya underfield conditions

*Average of two locations

Fig 1: Effect of different treatments on disease incidence of Papaya ringspot virus in papaya under field conditions

reduction (Fig 1), This is because the barrier crops have been shown to be effective in reducing virus transmission in crops by blocking aphids from reaching the target plant. Since the barrier crop can grow upto

Fig 2: Effect of different treatments on plant height of Papaya ringspot virus in papaya under field conditions.

10-11 feet, it can be suggested as intercrop with widely grown dwarf and semi dwarf varieties like, Red Lady. Diversification of flora can reduce the incidence of many non-persistent aphid-borne viruses. Because,

Plate 2: Combination of all the Plate 3: Control plants (T11) treatments (T10)

non-host crops attenuates the spread of non persistent viruses by avoiding influx of vector population on main crop (Krishna Kumar *et al.*, 2010). Hence, barrier crops like Jowar / Maize should be sown densely along the perimeter two months before papaya transplanting.

The physical approach of growing papaya with silver reflective row (T2) covers recorded 65.67 per cent disease control with an average plant height and yield of 3.49 feet and 41.57 kg per plant respectively. Reflective or floating row covers delay the appearance of virus diseased plants by excluding or repelling the aphids by reflecting UV light (Gonsalves *et al.*, 2010). Compare to other colors of plastic mulch, silver reflective mulch recorded superior in reducing aphid populations.

Soil and foliar application of micronutrients (T3) was found significantly superior over foliar spraying of micronutrients which has recorded 3.59 feet of plant, 45.20 kg of yield per plant and 41.00 per cent disease control. Yadav *et al.* (2010) recorded maximum plant growth and minimum crop duration with recommended dose of fertilizers (200+90+200 NPK g / plant) + 40 g Zn EDTA + 20 g MnSO4 + 5 g CuSO4 + 10 g Borax / plant.

Among the bio-molecules, *Kappaphycusalv arezii*-1 (T7) has recorded 71.66 per cent disease control which was followed by Synthetic Oligo (SEVI) *i.e.*, 71.33 per cent. The seaweed (marine macroalgae) polysaccharides such as laminarin, sulphated laminarin, fucans and lambda carrageenan and oligosaccharides such as oligocarrageenan kappa, the oligo-alginate Poly-Ma and the oligosulphatedgalactan Poly-Ga also stimulate defense responses in plants inducing protection against bacteria, fungi and viruses (Laporte *et.al.*, 2007). It was also shown that the seaweed oligo-sulphated-galactan Poly-Ga induced protection against tobacco mosaic virus (TMV) in tobacco plants.

Spraying with bio-pesticides like neem leaf extract and neem oil has recorded 53.33 and 60.00 per cent respectively, which were significantly superior over control which has recorded 100 per cent disease incidence (Plate 3). In recent years, plant extracts are of great concern for plant protection against different diseases (Harish *et al.*, 2008; Slusarenko *et al.*, 2008 and Madhusudhan *et al.*, 2011). The AVP substances from plant extracts were found to be effective in reducing the Sunflower necrosis virus (SFNV) infection both in cowpea and sunflower plants (Lavanya *et al.*, 2009).

Though the disease was known from quite a long period, no effective disease control measures have been developed. Hence, sustainable and non chemical integrated management method which comprises of growing maize as live barriers, physical approach of reflective mulch, application of micronutrients, use of biopesticides and biomolecules provides an efficient method against papaya ringspot virus control.

References

- ARAVIND, G., DEBJIT BHOWMIK, DURAIVEL, S. AND HARISH, G., 2013, Traditional and Medicinal Uses of *Caricapapaya. J. Medicinal Plants Studies*, 1 (1):7-15.
- DAS, K., TIWARI, R. K. S. AND SHRIVASTAVA, D. K., 2010, Techniques for evaluation of medicinal plant products as antimicrobial agent: current methods and future trends. *J. Med. Plants Res.*, **4**: 104 - 111.

FAOSTAT, 2012, Crop Production. http://faostat.fao.org.

GONSALVES, D., TRIPATHI, S., CARR, J. B. AND SUZUKI, J. Y., 2010, Papaya Ringspot virus. *The Plant Health Instructor*, **36**: 415-437.

- HARISH, S., SARAVANKUMAR, D., EBENEZAR, E. G. AND SEETHARAMAN, K., 2008, Use plant extracts and biocontrol agents for the management of brown spot disease in rice. *Bio. Control*, 53 : 555 - 567.
- KRISHNA, K. L., PARIDHAVI, M. AND JAGRUTI. PATEL, 2008, Review on nutritional, medicinal and pharmacological properties of Papaya (*Carica papaya* Linn.). *Natural Product Radiance*, 7 (4): 364 - 373.
- KRISHNA KUMAR, N. K., SINGH, H. S. AND KALLESHWARASWAMY, C. M., 2010, Aphid (Aphididae: Homoptera) vectors of papaya ringspot virus (PRSV), bionomics, transmission efficiency and factors contributing to epidemiology. *Acta Hort.*, 851:431-442.
- LAPORTE, D., VERA, J., CHANDIA, N. P., ZUNIGA, E., MATSUHIRO, B. AND MOENNE, A., 2007, Structurally unrelated algal oligosaccharides differentially stimulate growth and defense against tobacco mosaic virus in tobacco plants. J. Appl. Phycol., 19: 79 - 88.
- LAVANYA, N., SARAVANAKUMAR, D., RAJENDRAN, L., RAMIAH, M., RAGUCHANDER, T. AND SAMIYAPPAN, R., 2009, Management of Sunflower necrosis virus through anti-viral substances. *Arch. Phytopathol. Plant Prot.*, 42: 265 - 276.

- MADHUSUDHAN, K. N., VINAYARANI, G., DEEPAK, S. A., NIRANJANA, S. R., PRAKASH, H. S., SINGH, G. P. AND PRASAD, B. C., 2011, Antiviral activity of plant extracts and other inducers against tobamoviruses infection in bell pepper and tomato plants. *Int. J. Plant Pathol.*, 2:35-42.
- PANSE, V. G. AND SUKHATME, P. U., 1967, Statistical Methods for Agricultural workers, ICAR, New delhi.
- SLUSARENKO, A. J., PATEL, A., PORTZ, D., 2008, Control of plant diseases by natural products: allicin from garlic as a case study. *Eur. J. Plant Pathol.*, **121** : 313 - 322.
- USHARANI, T. R., LAXMI, V., JALALI, S. AND KRISHNAREDDY, M., 2013, Duplex PCR to detect both Papaya ring spot virus and Papaya leaf curl virus simultaneously from naturally infected papaya (*Carica papaya* L.). *Indian J. Biotech.*, **12** : 269 - 272.
- VINCENT, J. M., 1947, Distribution of fungal hypae in the presence of certaininhibitors. *Nature*, **159** : 850.
- YADAV, M. K., PATEL, N. L, PARMAR, B. R., KIRTIBARDHAN AND PARAMVER, S., 2010, Effect of micronutrients on growth and crop duration of banana cv. Grand Nain. *Prog. Hortic.*, **42** (2) : 162 - 165.

(Received : May, 2017 Accepted : August, 2017)