Cloning of *White* Gene of the Melon Fly, *Zeugodacus cucurbitae* (Coquillett) (Diptera : Tephritidae) and *in vitro* Restriction Analysis of Different Single Guide RNAs (sgRNAs)

SANJAY KUMAR PRADHAN¹, R. ASOKAN² AND B. SHIVANNA³

^{1&3}Department of Agricultural Entomology, College of Agriculture, UAS, GKVK, Bengaluru - 560 065 ²ICAR- Indian Institute of Horticultural Research, Bengaluru - 560 089

AUTHORS CONTRIBUTION

SANJAY KUMAR PRADHAN : Conceptualization, analysis, original draft preparation; R. ASOKAN & B. SHIVANNA : Conceptualization, framing research proposal, data curation and draft correction

Corresponding Author : SANJAY KUMAR PRADHAN Department of Agricultural Entomology, CoA, UAS, GKVK, Bengaluru

Received : October 2022 *Accepted* : February 2023 e-Mail : sanjaymkg314@gmail.com

ABSTRACT

Zeugodacus cucurbitae (Coquillett) is a major pest affecting cucurbit crops. CRISPR/ Cas9 mediated mutagenesis of target genes in Z. cucurbitae by generating a series of frame-shift mutation will help in changing physiology and behaviour of the insect. White gene is an important eye pigmentation gene widely used as marker gene in Drosophila melanogaster. PCR and Cloning of Z. cucurbitae white gene (2051bp) was performed. Off-target minimized gRNAs were designed by using bioinformatics online software CHOPCHOP by giving white coding sequences as input. Efficiency of the designed sgRNA was confirmed by in vitro restriction assay.

Keywords : CRISPR/Cas9, Guide RNA, White gene, Zeugodacus cucurbitae

 \mathbf{F} RUIT flies (Diptera : Tephritidae) are highly invasive and damaging pest species affecting the international trade of fruits and vegetables. More than 4500 species from Tephritidae family flies were described till date, which represents one of the most diverse group of acalyptrate Dipterans from superfamily Tephritoidea (Freidberg, 2006 and David *et al.*, 2016). Direct losses in a large variety of agricultural produce occur due to feeding and development of the maggots in fruits and vegetables (Virgilio *et al.*, 2015).

The melon fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae) is presumed to be from India (Bezzi, 1913), but now this pest has worldwide distribution (Virgilio et al., 2010 and Li et al., 2012) infesting more than 125 host plant species, most of which belong to the family Cucurbitaceae like cucumber (Cucumis sativus), bitter gourd (Momordica charantia), pumpkins (Cucurbita moschata), watermelon (Citrullus lanatus), muskmelon (Cucumis melo) etc. (White, 2006; Vayssieres et al., 2008). Z. cucurbitae adults respond

positively to preferred cucurbitaceae host fruit volatiles (Subhash et al., 2018).

Existing management practices for the melon fly are destruction of infested fruits and vegetables, raking of soil, biological control and chemical control. Sterile insect technique (SIT) based area wide management practices helped to eradicate the pest from all the islands of the Okinawa archipelago in Japan (Shimizu *et al.*, 2007). Conventional management practices are associated with many disadvantages related to efficiency, can be timeconsuming and come with environmental, animal and human hazards as well as side effects. By considering drawbacks, researchers explored new strategies and recent advancements in genetic control

CRISPR-Cas9 system is considered as a revolutionary technology with high efficiency and precision that can be applied to a wide range of species. A single guide RNA (sgRNA) finds target site in a genome, which can be implemented by scanning for protospacer adjacent motif (PAM) sequences (like 5'-NGG-3' for SpCas9). The guide RNA (gRNA) domain of the sgRNA determines both the efficacy and specificity of the genome editing activities by Cas9 (Jinek *et al.*, 2012).

Researches on the basis of genetic control of the melon fly, Z. cucurbitae are lacking. White gene regulating pigmentation in Z. cucurbitae will modify the visual behaviour of the target insect, which will help in devising suitable genetic control for the area wide pest management of the same. Optimization of sgRNA design is important for the success of gene editing experiments. The aim of this study is to identify and clone the white gene in Z. cucurbitae and validate sgRNAs by in vitro restriction assay to confirm the efficiency of restriction of the target gene, so that we can proceed for further micro injection studies.

MATERIAL AND METHODS

Mass Rearing of the Insect

Stock culture of Zeugodacus cucurbitae was maintained on cucumber (Cucumis sativus L.) at Division of Basic Sciences, ICAR-IIHR, Bengaluru, India at 25 ± 1 °C, 75 ± 1 per cent relative humidity with 14h:10h L:D photoperiod. The infested cucumber was placed in a container containing thin layer of sieved sand at the bottom for pupation. After pupation, the pupae were collected from sand and transferred to acrylic cages for adult emergence. Grinded sugar along with yeast powder and water was provided as a food source for adults. Insects obtained from this starter culture were used in further experiments.

White Gene Identification and Primer Designing

The pigmentation gene, *white* was selected from the annotated NCBI genome database. Sequence similarity of *white* gene of melon fly with other tephritid species was determined by sequence alignment through ClustalW multiple sequence alignment in BioEdit (version 7.2.6.1) software.

Gene-specific primers were designed manually by using OligoAnalyzer Tool at Integrated DNA Technologies (IDT) site (Table 1). Then the specificity of the primers was confirmed by using the database of NCBI Primer BLAST (https://www.ncbi. nlm.nih.gov/tools/primer-blast/).

TABLE 1Zeugodacus cucurbitae white gene-specific primers

Primers	Sequences (5'-3')
Forward Primer	AAATGGGTCAGGAGGATCAG
Reverse Primer	CTCCTCATTTTACTCCTTGCG

RNA Isolation and Complementary DNA (cDNA) Synthesis

Male adult flies (5 nos.) were taken from stock culture and kept in a 10 ml falcon tube. Then the falcon tube was kept in a container containing liquid nitrogen for 2 minutes. After that the tube was shaken vigorously to detach different body parts. Then five heads were collected by using fine camel brush and transferred to one 1.5 ml eppendorf tube. Total RNA was extracted by using Trizol Reagent (Sigma Aldrich, USA) according to the manufacturer's protocol. Integrity of RNA was checked on 1 per cent agarose gel and further quantified with Nanodrop spectrophoto meter (Nanodrop Lite, Thermo Scientific, USA).

Complementary DNA (cDNA) was synthesized from the total RNA ($2\mu g$) by Revert Aid First Strand cDNA synthesis kit (Thermo Scientific, USA) according to the manufacturer's protocol. cDNA synthesis was confirmed by PCR amplification of *RPL60* internal control gene and confirmed on 2 per cent agarose gel.

PCR Amplification of White Gene and Gel Elution

The cDNA was diluted by using autoclaved milliQ water (1:10::cDNA:Water) and further used as a template to amplify the entire coding region of the *white* gene using gene-specific primers in PCR (Table 1, 2 and 3). Amplicon products were separated to determine size *via* electrophoresis on 1 per cent agarose gel. The desired amplicon band was eluted by using NucleoSpin Extract II kit (Machery Nagel, Germany) by adopting manufacturer's protocol and further used for cloning.

Chemicals for White Gene Amplification	Working Concentration	Quantities (µl)	
Autoclaved milliQ water	-	12.6 µl	
10X Mg ⁺² free buffer	1X	2.5 µl	
25mM MgCl ₂	2.5mM	2.5 µl	
2.5mM dNTPs mix	0.4mM	4.0 µl	
Template (cDNA)	1:10 diluted	1.0 µl	
Forward Primer (white gene) 5'-AAATGGGTCAGGAGGATCAG-3'	0.2 µM	1.0 µl	
Reverse Primer (white gene) 5'-CTCCTCATTTTACTCCTTGCG-3'	0.2 µM	1.0 µl	
LA Taq polymerase	1 unit/ µl	0.4 µl	
	Total Volume	25 ul	

TABLE 2 PCR amplification of white gene

PCR conditions						
Steps	Steps Temperature Time					
Initial denaturation	95°C	1 minutes	1x cycle			
Final denaturation	95°C	10 seconds				
Annealing	56°C	40 seconds	35x cycles			
Extension	68°C	2 minutes 10 seconds				
Final extension	68°C	10 minutes	1x cycle			
Store	4°C	Forever				

TABLE 3

Ligation of eluted *white* gene amplicon to cloning vector and transformation

The eluted *white* gene amplicon was ligated into general purpose cloning vector, pTZ57R/T vector (Thermo Scientific, Lithuania) (Table 4). The main features of the vector are the blue and white colony selection, the presence of ampicillin resistance

1	ABLE 4					
Ligation of white gene into cloning vector						
Chemicals Added	Working Concentration	Quantities (µl)				
Autoclaved milliQ water	-	8.5 µl				
5X Ligase buffer	1X	4.0 µl				
<i>pTZ57R/T</i> vector	25 ng	0.5 µl				
Template gene (white)	111.8 ng	6.0 µl				
T4 DNA ligase	1 unit/ μl	1.0 µl				
	Total Volume	20µl				

marker gene and the integrated sequence of M13 primers for easy sequencing etc. Recombinants were distinguished from non-recombinants by blue-white selection of colony. Blue colony indicates nonrecombinant colony, whereas white colony indicates recombinant colony.

The ligated products were used for transforming *Escherichia coli* DH5- α by standard protocols. The transformed cells were spread on LB agar plates containing X-gal (20 mg/ml), IPTG (100 mM) and ampicillin (100 µg/ml). The plates were then incubated at 37 °C overnight to screen blue and white colonies and all the white colonies (colonies harboring the insert) were inoculated in LB broth containing ampicillin, incubated at 37 °C overnight and stored at 4 °C until further use.

Plasmid Isolation and Sequencing

Plasmids were isolated from the overnight culture of the transformed white colonies cultured in LB broth

Fig. 1 : pTZ57R/T vector map

using Gene JETTM Plasmid Miniprep Kit (Thermo Scientific, Fermentas, Lithuania) according to manufacturer's protocol and the recombinant plasmid was confirmed in 1 per cent agarose gel electrophoresis with reference plasmid (control DNA1).

Sequencing was carried out in triplicates (three biological replicates and three technical replicates) of the above clones in an automated sequencer (ABI prism ® 3730 XL DNA Analyzer; Medauxin, Bengaluru) using M13 universal primers both in forward and reverse directions.

Sequence Analysis and Data Interpretation

Multiple sequence alignments of the *white* gene clone sequences and database *white* gene reference sequences were performed with ClustalW multiple alignment tool and the results were displayed using 'BioEdit (version 7.2.6.1). Percentage query similarity between the *white* gene sequenced clones and database *white* gene reference sequences was noted.

Identification of Off-Target Minimized gRNA

CHOPCHOP (version 3) (https://chopchop.cbu. uib.no/) is a web tool for selecting target sites for

CRISPR/Cas9, CRISPR/Cpf1, CRISPR/Cas13 or NICKASE/TALEN-directed mutagenesis. It uses different alignment algorithms to predict off-target binding of sgRNAs and TALENs within short search time (Montague *et al.*, 2014).

The sequenced Z. cucurbitae genome set was imported into the public site of the CHOPCHOP (version 3) tools (Labun *et al.*, 2016). The gRNA region was identified from functional domain of the concerned protein by using CHOPCHOP (version 3) tools. Two sgRNA target sites, in exon2 (5'-AGATTATCCGTGGTGAGCGTAGG-3') and exon 7 (5'-ACCGAATGAAGTCGACACATTGG-3') were selected by performing NCBI- BLAST to check off-target effect. Reverse complement of the gRNA was also designed (Table 5).

Hybridisation of gRNA and Cloning

The designed gRNA and its reverse complement were hybridized by following manufacturer's protocol (Thermo Scientific sgRNA hybridization kit). Then the hybridized gRNA was ligated to a lab modified linearized IVT cloning vector and incubated at 16 °C

Zeugodacus cucurbitae white gene sgRNA primers and its reverse complement (RC)					
Whsg1	Whsg7				
>Wh sg1-	>Wh sg7-				
AGATTATCCGTGGTGAGCGTAGG	ACCGAATGAAGTCGACACATTGG				
>Wh sg1 RC-	>Wh sg7 RC-				
CCTACGCTCACCACGGATAATCT	CCAATGTGTCGACTTCATTCGGT				

TABLE 5

overnight. Initially, the IVT cloning vector was digested by using endonuclease enzyme (BbsI), the site where sgRNA has to be ligated. Then the ligated product was transformed into E. coli DH5- α cell and incubated over night at 37 °C. The recombinant colony was picked for inoculation into fresh LB media and plasmid was isolated from overnight inoculated product. Plasmids were further sequenced in order to identify the insert.

PCR Amplification of sgRNA Cassette and in vitro Transcription

For in-vitro single guide RNA synthesis, sgRNA cassettes (T7 promoter + sgRNA+ scaffold+ terminator) was amplified by using M13 forward and reverse primers. The amplicon size was determined by gel electrophoresis in 1.5 per cent agarose gel.

TABLE 6
Ligation protocol for sgRNA mobilization into
IVT vector

Chemicals added	Working Concentration	Volume (µl)		
Autoclaved MilliQ water	-	8.5 µl		
5X Ligase buffer	1X	4.0 µl		
Linearised IVT vector	25 ng	3 µl		
ds Oligos (Hybridized gRNA)	2.75 ng	3.5 µl		
T4 DNA ligase	1 unit/ μl	1.0 µl		
То	tal Volume	20 µl		

The sgRNAs (24 nucleotides) were synthesized through *in vitro* transcription by using T7 promoter by following the manufactures protocol (NEW ENGLAND Biolab ® Inco) (Table 7). The reaction mixture was incubated 37 °C overnight. Next day the sample was treated with DNase I (4 μ l) enzyme and incubated at 37 °C for 1 hour and then the samples were treated with 0.5 M EDTA (5 μ l) and incubated at 65 °C for 10 minutes to denature DNase I enzyme. Then the sample was purified by Phenol: Chloroform: Isoamyl alcohol (P:C:I) method to yield good quantity of sgRNAs.

TABLE 7In vitro transcription reaction mixture

Components	Working Concentration	Volume
Autoclaved MilliQ water	-	12.5 µl
5X Transcription Buffer	1X	20 µl
NTP Mix	10 mM	20 µl
Template	5 µg	40 µl
T7 RNA Polymerase	20 units/ µl	5 µl
Ribolock RNase Inhibitor	40 units/ µl	2.5 µl
	Total Volume	100 µl

The concentration of sgRNAs were quantified using Nanodrop spectrophotometer (Nanodrop Lite, Thermo Scientific, USA) and further assayed on 2 per cent agarose gel with RNA ladder that has 100-base band. Concentration of the sgRNAs were estimated by using ImageJ software (v 1.53s) by comparing the intensity of band between ladder and sgRNAs.

In vitro Restriction Assay

In vitro restriction of *white* CDS with Cas9 nuclease and synthesized sgRNAs is quintessential to validate the efficiency of sgRNAs. The assay was performed for two sgRNAs (Whsg1, Whsg7) along with a negative control (Table 8). The components of CRISPR/Cas9 system were added in fixed quantities by following manufactures protocol (NEW ENGLAND Biolab ® Inco) with slight modifications (Table 9). Then *in vitro* restriction was confirmed by gel electrophoresis in 2 per cent agarose gel.

TABLE 8
The CRISPR/Cas9 system of two sgRNAs for in
<i>vitro</i> restriction assay

viiro restriction assay						
Sample No. Components of CRISPR/ Cas9 System						
1.	White gene CDS + Cas9 only					
2.	White gen	e CDS + Cas9 + 7	Whsg1			
3.	White gen	e CDS + Cas9 + 7	Whsg7			
TABLE 9						
The CRIS	SPR/Cas9	components for	in vitro			
	restric	tion assay				
Components Working Volume						
Autoclaved MilliQ water		-	11.34 µl			
NEBuffer r3.1		1X	2 µl			
150 mM KCl		5 mM	0.66 µl			
sgRNA		150 ng/ μl 0.4				
Cas9 diluent (0.25 µl + 4 75 µl NEBuffer r3 1)		300 ng/ µl	0.6 µl			

	-)			
	15 µl			
Pre-incuba				
White gene CDS	5 µl			
Tot	20 µl			
Incubate for 1 hour at 37°C				

RESULTS AND DISCUSSION

RNA Isolation and cDNA Synthesis

Integrity of total RNA isolated from head region was confirmed by gel electrophoresis in 1 per cent agarose gel (Fig. 3). In nanodrop spectrophotometer (Nanodrop Lite, Thermo Scientific, USA), the RNA concentration was 1.3 μ g/ μ l with A260/280 value of 1.64. cDNA synthesis was confirmed by PCR amplification of *RPL60* internal control gene. The amplicon band size of 119bp was separated by gel electrophoresis on 2 per cent agarose gel (Fig. 4). *RPL60* gene was the most stable reference gene (119bp) found in *Zeugodacus cucurbitae* (Zhang *et al.*, 2018).

PCR Amplification of White Gene and Cloning

PCR amplification of *white* gene CDS with gene-specific primers was confirmed by gel

Fig. 3: Total RNA isolated from head region of Zeugodacus cucurbitae

Fig. 4 : PCR amplification of RPL60 internal control gene

electrophoresis on 1 per cent agarose gel with amplicon band size of 2051bp (Fig. 5). Further the band was eluted from the gel and quantified on Nanodrop spectrophotometer (Nanodrop Lite, Thermo Scientific, USA). The concentration was $34.5 \text{ ng/} \mu l$. This eluted product was further used for cloning. The isolated plasmids were checked by gel electrophoresis on 1 per cent agarose gel along with reference control DNA1 plasmid to observe the raise in band size. In all the clones, insert was observed (all bands were raised compared to reference plasmid) (Fig. 6).

Fig. 5 : PCR amplification of Zeugodacus cucurbitae white gene CDS

Fig. 6 : Zeugodacus cucurbitae white gene clones compared with reference plasmid (R)

NCBI-BLAST of the cloned sequences showed 98.09 per cent sequence similarity with predicted Z. cucurbitae protein white (W) (XM_011189498.2). It showed high sequence similarity with predicted white gene sequences of Bactrocera dorsalis (XM_011202225.3) (90.44%), B. tryoni (XM_040106531.1) (90.20%), B. latifrons (XM_018942980.1) (89.61%) and B. oleae (XM_036371618.1) (89.51%) (Fig.7). This revealed that the predicted domains are conserved in all the related tephritid fruit flies.

Des	criptions	Graphic Summary Alignments Taxonomy										
Sec	quences pro	ducing significant alignments		Downlo	ad	~	Sele	ect colu	umns ~	Show	100 💙 🔞	
	select all 76	sequences selected		Gen	Bank	G	raphics	<u>Dist</u>	ance tree	of result	MSA Viewer	2
		Description	Scientific Name	M So	ax ore	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession	
~	Zeugodacus cu	curbitae isolate CucBan white-eye mRNA, complete cds	Zeugodacus cucurbitae	31	68	3768	100%	0.0	100.00%	2040	<u>OQ632780.1</u>	
	PREDICTED: Z	eugodacus cucurbitae protein white (W), mRNA	Zeugodacus cucurbitae	3	541	3541	100%	0.0	97.99%	3253	XM_011189498.3	
<	PREDICTED: B	actrocera dorsalis protein white (LOC105224216), mRNA	Bactrocera dorsalis	27	10	2710	100%	0.0	90.64%	3392	XM_011202225.4	
<	PREDICTED: B	actrocera neohumeralis protein white (LOC126758950). mRNA	Bactrocera neohumeral	is 20	99	2699	100%	0.0	90.54%	3326	XM_050473441.1	
~	PREDICTED: B	actrocera tryoni protein white (LOC120776067), mRNA	Bactrocera tryoni	26	60	2660	100%	0.0	90.20%	2040	XM_040106531.1	
~	Bactrocera dors	alis clone IIHR_BD_WG1 white protein (w) mRNA, complete cds	Bactrocera dorsalis	25	95	2595	100%	0.0	89.66%	2037	MT895645.1	
~	PREDICTED: B	actrocera latifrons protein white (LOC108974879), mRNA	Bactrocera latifrons	25	593	2593	100%	0.0	89.61%	2142	XM_018942980.1	
•	PREDICTED: B	actrocera oleae protein white (LOC106620505), mRNA	Bactrocera oleae	25	82	2582	100%	0.0	89.51%	3349	XM_036371618.1	
~	Ceratitis capitat	a protein white (W). mRNA	Ceratitis capitata	20	43	2043	99%	0.0	84.78%	2250	NM_001279365.1	
~	C.capitata white	e gene mRNA	Ceratitis capitata	20	43	2043	99%	0.0	84.78%	2252	X89933.1	
~	PREDICTED: A	nastrepha obliqua protein white (LOC129239220), mRNA	Anastrepha obliqua	19	921	1921	98%	0.0	83.94%	2987	XM_054874570.1	
~	PREDICTED: A	nastrepha ludens protein white (LOC128858475), transcript variant X4, mR	. Anastrepha ludens	19	05	1905	98%	0.0	83.81%	2590	XM_054094783.1	

gRNAs Cloning, PCR Amplification of gRNAs Cassette and *In vitro* Transcription

Designed gRNAs had no potential off-target sites, which were confirmed by NCBI-BLAST. The seed region (final 12 nucleotide of the target sequence within the sgRNA) (Wu, 2014) and protospacer adjacent motif (PAM) sequences were matching perfectly to the target sequence. Studies by Cong et al. (2013) revealed that the seed region of sgRNA and PAM sequences play vital role in initiating efficient restriction in the target region. Mismatch in these seed region and absence of PAM site effects in non-recognition of target site. gRNA was hybridized and cloned into IVT cloning vector. Plasmids isolated were confirmed by gel electrophoresis in 1 per cent agarose gel against reference IVT vector (Fig. 8). It confirmed insertion of gRNA into the vector in all the gRNAs. Further the clones were confirmed by sequencing.

Guide RNA cassette (T7 promoter + gRNA + scaffold) was PCR amplified with M13 forward and reverse primer. The PCR product was confirmed by gel electrophoresis on 1 per cent agarose gel with amplicon band size of 317bp (Fig. 9). The bands were eluted from the gel and used for *in vitro* transcription. The *in vitro* transcribed sgRNAs were quantified by gel electrophoresis on 2 per cent agarose gel with

Fig. 8 : *White* gRNA clones compared with reference IVT vector

Fig. 10 : Quantification of Wh sgRNA with RNA ladder

RNA ladder (Fig. 10) and processed by using ImageJ software (v1.53s). Concentration of Whsg1 and Whsg7 was 548 ng/ μ l and 465 ng/ μ l respectively.

In vitro Restriction Assay

In vitro restriction assay confirmed the potency of Cas9 protein and sgRNAs to cleave the target site of double stranded DNA. The in vitro complex mix was loaded on 1.5 per cent agarose gel. First lane was 1kb ladder, second lane was white gene CDS + Cas9, third lane was white gene CDS + Cas9 + Whsg1 and fourth lane was white gene CDS + Cas9 + Whsg7. Visualisation on agarose gel revealed one solid band of 2051bp in second lane. Third lane showed multiple fragments of bands of size 1890bp and 161bp, which were cut released bands from 2051bp white gene CDS band. Fourth lane showed multiple fragments of bands of size 1641bp and 410bp, which were cut released bands from 2051bp white gene CDS band (Fig. 11). These sgRNAs were further used for microinjection of ribonucleoprotein (RNP) complex into embryos of Z. cucurbitae.

White gene was abundantly expressed in the compound eyes of *Bactrocera, Anastrepha* and *Ceratitis*. Mutation of this gene leads to loss of eye pigmentation (Bai *et al.,* 2019 and Sim *et al.,* 2019). Complete loss of *white* gene impairs formation of dimers with Brown and Scarlet proteins, which blocks

Fig. 11: In vitro restriction assay of white sgRNAs

the transport of precursor of ommochromes, responsible for eye pigmentations. So, the eyes appear as white as a consequence (Choo *et al.*, 2018).

White mutants in Ceratitis capitata exhibited unsuccessful mating due to reduced courtship behaviour (Briceno, 2003).

Cloning and sequencing of *white* gene in Z. *cucurbitae* paved way for further characterization and functional analysis. As there is non-availability of published database of *white* gene of Z. *cucurbitae*, functional annotation of this gene following microinjection and phenotypic and molecular validation will enrich the knowledge about its functionality. *In vitro* restriction assay confirmed the restriction efficiency of the designed sgRNAs. Further, it can be proceeded for microinjection of Z. *cucurbitae* embryos. Post mutagenesis studies can be carried out to check physiological and behavioural changes in the flies.

References

BAI, X., ZENG, T., NI, X.Y., SU, H. A., HUANG, J., YE, G. Y., LU, Y. Y. AND QI, Y. X., 2019, CRISPR/Cas9 mediated knockout of the eye pigmentation gene white leads to alterations in colour of head spots in the oriental fruit fly, *Bactrocera dorsalis*. *Insect Mol. Biol.*, 28 (6): 837 - 849. The Mysore Journal of Agricultural Sciences

- BEZZI, M., 1913, Indian trypaneids (fruit-flies) in the collection of the Indian Museum, Calcutta. *Memoirs* of Indian Museum, 3: 53 - 175.
- BRICEÑO, R. D., 2003, Sexual behaviour of mutant strains of the medfly *Ceratitis capitata* (Diptera: Tephritidae). *Rev. Biol. Trop.*, **51** : 763 - 767.
- CHOO, A., CRISP, P., SAINT, R., O'KEEFE, L. V. AND BAXTER, S. W., 2018, CRISPR/Cas9 mediated mutagenesis of the white gene in the tephritid pest *Bactrocera tryoni. J. Appl. Entomol.*, **142** (1-2) : 52 - 58.
- CONG, L., RAN, F. A., COX, D., LIN, S., BARRETTO, R., HABIB, N., HSU, P. D., WU, X., JIANG, W., MARRAFFINI, L. A. AND ZHANG, F., 2013, Multiplex genome engineering using CRISPR/Cas systems. *Science*, **339** (6121) : 819 - 823.
- DAVID, K. J., RAMANI, S. AND PRASANTH, M., 2016, Post abdominal structures, a new facet in tephritid taxonomic research: a case study of the genus *Dacus* Fabricius (Diptera: Tephritidae: Dacinae: Dacini). *Mysore J. Agric. Sci.*, **50** (2) : 218 222.
- FREIDBERG, A. (Ed.), 2006, Biotaxonomy of Tephritoidea. *Isr. J. Entomol.*, **35** (36) : 1 - 7.
- JINEK, M., CHYLINSKI, K., FONFARA, I., HAUER, M., DOUDNA, J. A. AND CHARPENTIER, E., 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. *Science*, **337** (6096) : 816 - 821.
- LABUN, K., MONTAGUE, T. G., GAGNON, J. A., THYME, S. B. AND VALEN, E., 2016, CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. *Nucleic Acids Res.*, 44 (W1) : W272 -W276.
- LI, Y., WU, Y., CHEN, H., WU, J. AND LI, Z., 2012, Population structure and colonization of *Bactrocera dorsalis* (Diptera : Tephritidae) in China, inferred from mtDNA COI sequences. J. Appl. Entomol., 136 (4) : 241 - 251.
- MONTAGUE, T. G., CRUZ, J. M., GAGNON, J. A., CHURCH, G. M. AND VALEN, E., 2014, CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. *Nucleic Acids Res.*, **42** (W1): 401 407.

- SHIMIZU, Y., KOHAMA, T., UESATO, T., MATSUYAMA, T. AND YAMAGISHI, M., 2019, Invasion of solanum fruit fly, *Bactrocera latifrons* (Diptera : Tephritidae) to Yonaguni Island, Okinawa Prefecture, Japan. *Appl. Entomol. Zool.*, **42** (2) : 269 - 275.
- SIM, S. B., KAUWE, A. N., RUANO, R. E., RENDON, P. AND GEIB, S. M., 2019, The ABCs of CRISPR in Tephritidae: developing methods for inducing heritable mutations in the genera *Anastrepha*, *Bactrocera* and *Ceratitis. Insect Mol. Biol.*, 28 (2): 277 - 289.
- SUBHASH, S., CHAKRAVARTHY, A. K. AND KAMALA JAYANTHI, P. D., 2018, Olfactory responses of gravid melon fly females, *Bactrocera cucurbitae* (Coquillett) to selected cucurbitaceous fruit volatiles. *Mysore J. Agric. Sci.*, 52 (2): 197 - 203.
- VAYSSIÈRES, J. F., CAREL, Y., COUBES, M. AND DUYCK, P. F., 2008, Development of immature stages and comparative demography of two cucurbit-attacking fruit flies in Reunion Island: *Bactrocera cucurbitae* and *Dacus ciliatus* (Diptera: Tephritidae). *Environ. Entomol.*, **37** : 307 - 314.
- VIRGILIO, M., DELATTE, H., BACKELJAU, T. AND DE MEYER, M., 2010, Macrogeographic population structuring in the cosmopolitan agricultural pest *Bactrocera cucurbitae* (Diptera: Tephritidae). *Mol. Ecol.*, **19**: 2713 - 2724.
- VIRGILIO, M., JORDAENS, K., VERWIMP, C., WHITE, I. M. AND DE MEYER, M., 2015, Higher phylogeny of frugi vorous flies (Diptera, Tephritidae, Dacini): localised partition conflicts and a novel generic classification. *Mol. Phylogenet. Evol.*, 85: 171 - 179.
- WHITE, I. M., 2006, Taxonomy of the Dacina (Diptera: Tephritidae) of Africa and the middle east. *Afr. Entomol. Memoir*, 2 : 1 - 156.
- WU, X., KRIS, A. J. AND SHARP, P. A., 2014, Target specificity of the CRISPR-Cas9 system. *Quant. Biol.*, 2:59 - 70.
- ZHANG, Y., GONG, Z., LI, L., NIU, L. AND FU, Y., 2018, Evaluation of endogenous reference genes in *Bactrocera cucurbitae* by qPCR under different conditions. *PloS One*, **13** (12) : e0202829.