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ABSTRACT

Onion prices in India, particularly in major markets such as Bengaluru, are highly

volatile due to seasonal factors, supply disruptions and unpredictable climatic

conditions. Accurate price forecasting is crucial for stabilising markets and aiding

informed decision-making by policymakers and stakeholders. Onions significantly

influence the food inflation index, accounting for 10.66 per cent of the 6.04 per cent

weight assigned to vegetables in the Consumer Price Index (CPI), emphasizing the

need for reliable price forecasts to manage inflationary pressures. This study compares

three forecasting models, Seasonal Auto-Regressive Integrated Moving Average

(SARIMA), Holt-Winters Exponential Smoothing (H-WES) and Long Short-Term

Memory (LSTM) to predict onion prices in Bengaluru. While SARIMA and Holt-

Winters effectively capture seasonal patterns, they struggle with non-linear relationships

and unexpected shocks inherent in agricultural markets. In contrast, the LSTM model

excels in identifying complex temporal dependencies and non-linearities. Using

historical price data, the study evaluated model performance based on accuracy metrics,

including Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error

(MAPE). The results showed that the LSTM model significantly outperforms compared

to traditional models. For the Local variety, LSTM achieved RMSE of 429.58, lower

than SARIMA (958.66) and Holt-Winters (749.25). For the Puna variety, LSTM showed

RMSE of 513.14, compared to SARIMA (1399.16) and Holt-Winters (669.35). These

findings confirmed that, LSTM’s superiority in capturing intricate price patterns,

particularly during volatility made it a reliable tool for onion price forecasting. This

study suggests that LSTM provides actionable insights to mitigate the effects of price

fluctuations on producers and consumers alike, informing policy interventions and

market strategies.
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ONION is one of the closely monitored vegetables
produced in India, along with tomato and potato

and is often referred to as a kitchen staple. The prices
of onions have a direct impact on consumers’
consumption baskets, making this commodity a
constant focus for the government. Price volatility in
onion is a significant concern, where onions accounted
for 14.21 per cent of the country’s total vegetable
production during 2022-23. For the 2023-24 season,

production is expected to decline to 242.44 lakh
tonnes, down from 302.08 lakh tonnes in the previous
year. This represents a sharp reduction of
approximately 59.64 lakh tonnes, mainly attributed
to unfavourable climatic conditions and reduced
output in key onion-producing states like Maharashtra,
Karnataka and Andhra Pradesh (Anonymous, 2024).
Such fluctuations in production and supply
significantly impact on both consumer prices and the
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income stability of farmers, making onion price
forecasting an important area of research to support
economic and policy decision-making. In addition to
its importance as a staple food, onions play a
substantial role in shaping India’s food inflation index.
According to the Ministry of Statistics and Programme
Implementation, vegetables are assigned a weight of
6.04 per cent in the Consumer Price Index (CPI), with
onions account for 10.66 per cent of that total,
alongside potato at 16.29 per cent and tomato at 9.52
per cent (Anonymous, 2015).

The volatility in onion prices, driven by seasonal
supply disruptions, climatic variability and logistical
challenges has a direct bearing on overall food
inflation and the broader economy. As such, accurate
price forecasts are critical for managing inflationary
pressures and ensuring market stability. However,
a large part of the variation in commodity prices is
also attributable to variations of the trend itself
(Bourdon, 2011). This study undertakes a comparative
analysis of three prominent forecasting models
Seasonal Auto-Regressive Integrated Moving Average
(SARIMA), Holt-Winters Exponential Smoothing and
Long Short-Term Memory (LSTM) to determine the
efficacy in forecasting of onion prices in the Bengaluru
market. Bengaluru, as a major trading hub for onions,
frequently experiences significant price fluctuations
that affect both local and national markets. Previous
research has demonstrated that machine learning
models, such as LSTM, tend to outperform traditional
statistical models in handling complex, non-linear
datasets (Zhang et al., 2024). By evaluating the
performance of these models in the context of onion
price forecasting, this study aims to provide valuable
insights that could enlighten policy interventions and
market strategies for mitigating price volatility.

METHODOLOGY

Data Collection

The time series data on daily onion prices were
obtained from the Krishi Marata Vahini portal, which
provides comprehensive agricultural commodity
prices from various markets across Karnataka. The
onion commodity was selected for the analysis due to

its significant economic impact, high market demand
and regional importance within Karnataka. The
Bengaluru market was chosen for its substantial
volume of arrivals and the availability of a continuous
and extensive dataset, establishing it as a pivotal
regional trading hub for onions. Data on onion prices
and arrivals were collected from July 2009 to August
2024. This study focuses on two specific onion
varieties: Onion Local and Onion Puna. To effectively
capture seasonal variations and facilitate modelling,
the daily price data were averaged and resampled to a
weekly frequency. Additionally, data retrieval was
automated through the use of a Python package named
kmvahini (Patil, 2024), which streamlines the
extraction of relevant price data from the afore
mentioned portal.

Analytical Techniques

Holt-Winters Model : Also known as the Triple
Exponential Smoothing model, for time series
forecasting. This approach extends simple exponential
smoothing to capture trends and seasonality, making
it suitable for datasets exhibiting both characteristics
(Holt, 1957; Winters, 1960). The Holt-Winters model
consists of three main components: the level, the trend,
and the seasonality. The model can be expressed in
two variations: additive and multiplicative, depending
on whether the seasonal component is constant or
proportional to the level of the series.

The model equations are given by:

𝑍𝑡 = (𝛽0 + 𝛽1𝑡) + 𝑆𝑁𝑡 + 𝐼𝑅𝑡 →  Additive 
𝑍𝑡 = (𝛽0 + 𝛽1𝑡) × 𝑆𝑁𝑡 × 𝐼𝑅𝑡 →  Multiplicative 

 

With three smoothing equations:

𝑙𝑡 = 𝛼(𝑦𝑡/𝑠𝑛𝑡−𝑙) + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1) →  Level 
𝑏𝑡 = 𝛾(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛾)𝑏𝑡−1 →  Trend 

𝑠𝑛𝑡 = 𝛿(𝑦𝑡/𝑙𝑡) + (1 − 𝛿)𝑠𝑛𝑡−𝑙 →  Seasonal 
 

Where,

 and : Smoothing constants

I: Number of seasons in a year

SN
t
: Seasonal pattern

IR
t
: Irregular components

Mysore J. Agric. Sci., 59 (2) : 195-205  (2025) MANOJKUMAR PATIL et al.
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Fig. 1 : Proposed model framework for forecasting

Seasonal ARIMA (SARIMA): This model is an

extension of the ARIMA framework, is specifically

designed to account for seasonality (Box and Jenkins,

1976). By capturing both seasonal and non-seasonal

components, it is well-suited for data with repeating

patterns, such as monthly or quarterly observations,

where trends recur over time.

The general form of the SARIMA (p,d,q)(P,D,Q)[s]
model is:

Φ𝑃(𝐿𝑠)𝜙𝑝 (𝐿)(1 − 𝐿)𝑑 (1 − 𝐿𝑠)𝐷𝑦𝑡 = Θ𝑄(𝐿𝑠)𝜃𝑞 (𝐿)𝜀𝑡  

Where,

L: Lag operator

Φ𝑃(𝐿𝑠)&Θ𝑄(𝐿𝑠):Seasonal auto regressive and moving

average polynomials of orders P&Q, respectively

Mysore J. Agric. Sci., 59 (2) : 195-205  (2025) MANOJKUMAR PATIL et al.
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𝜙𝑝 (𝐿)&𝜃𝑞 (𝐿) : Non-seasonal autoregressive and

moving average polynomials of orders p&q

d&D: Degrees of differencing for non-seasonal and
seasonal components

s: Length of the seasonal cycle

y
t
: Observed time series


t
: Error term (Kendall and Ord, 1990)

The general forecasting equation for SARIMA, which
incorporates both seasonal and non-seasonal
components, is:

�̂�𝑡 = 𝜇 +   

𝑝

𝑖=1

𝜙𝑖 𝑦𝑡−𝑖 +   

𝑃

𝑗 =1

Φ𝑗 𝑦𝑡−𝑗 ⋅𝑠 −   

𝑞

𝑘=1

𝛽𝑘 𝜀𝑡−𝑘 −   

𝑄

𝑙=1

Θ𝑙𝜀𝑡−𝑙⋅𝑠 + 𝜀𝑡  

Where,

ý
t
: Forecasted value

: Constant term

𝜙𝑖 &Φ𝑗: Non-seasonal and seasonal autoregressive

parameters

𝛽𝑘&Θ𝑙  : Non-seasonal and seasonal moving average
parameters

𝑦𝑡−𝑖&𝑦𝑡−𝑗 ⋅𝑠  : Past observations (non-seasonal and

seasonal lags)

𝜀𝑡−𝑘&𝜀𝑡−𝑙⋅𝑠  : Past errors (non-seasonal and

seasonal lags) (Box and Jenkins, 1976; Hyndman and
Athanasopoulos, 2018)

To automate the process of selecting the best-fitting
SARIMA model, the ‘auto_arima‘ function from the
Python ‘pmdarima‘ package, was used based on the
implementation originally developed in R by
Hyndman and Khandakar (2008). This function
evaluates different combinations of model parameters
p, d, q, P, D, Q, and s using information criteria such
as the Akaike Information Criterion (AIC) to identify
the optimal model for the time series data. The
‘pmdarima‘ package automates key steps like model
identification, parameter estimation and diagnostic
checking, thus improving efficiency in the forecasting
process.

Long Short-Term Memory (LSTM): This model is a
type of recurrent neural network (RNN) designed to

capture temporal dependencies in sequential data. It
is particularly effective for time series forecasting due
to its ability to retain information over long periods,
effectively mitigating the vanishing gradient problem
that commonly affects traditional RNNs (Hochreiter
and Schmidhuber, 1997). LSTM network consists of
memory cells that maintain information through three
primary gates: the input gate, the forget gate and the
output gate. These gates regulate the flow of
information, allowing the model to learn which data
to remember or forget;

i. Input Gate: Controls the extent to which new
information flows into the memory cell.

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑖 )

ii. Forget Gate: Determines which information is
discarded from the memory cell.

𝑓𝑡 = 𝜎൫𝑊𝑓 , [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑓൯ 

iii. Output Gate: Decides what information is sent to
the next layer or output.

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑜 ) 

Where,

𝑖𝑡 , 𝑓𝑡 , &𝑜𝑡  : Input, forget, and output gates, respectively..

h
t
-1: Previous hidden state

x
t
: Input at time t

𝑊𝑖 , 𝑊𝑓 , &𝑊𝑜: Weight matrices for the respective gates

𝑏𝑖, 𝑏𝑓 , &𝑏𝑜  : Bias terms

: Sigmoid activation function

The memory cell state C
t
 is updated as follows;

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ �̃�𝑡  

Where �̃� t is the candidate cell state, computed as;

�̃�𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) 

Finally, the hidden state h
t
 is produced using;

ℎ𝑡 = 𝑜𝑡 ⋅ tanh (𝐶𝑡) 

In this study, LSTM model used the Keras library in
Python, which simplifies the construction and training
of neural network models. The LSTM architecture will
be optimized through hyperparameter tuning,

Mysore J. Agric. Sci., 59 (2) : 195-205  (2025) MANOJKUMAR PATIL et al.
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including the number of layers, number of units per
layer, learning rate, and batch size.

RESULTS AND DISCUSSION

The descriptive statistics of onion prices for the two
varieties (Local and Puna) in the Bengaluru market is
presented in Table 1. Over the past 15 years, 788
records were collected for both varieties. The Local
onion variety had an average price of Rs.1367.08 per
quintal, with a standard deviation of Rs.963.21,
showed significant price variation from Rs.350 to
Rs.9,800 per quintal. Similarly, the Puna variety had
a higher average price of Rs.1,746.36 per quintal and
greater volatility, with a standard deviation of

Fig. 2 : LSTM (Long Short-Term Memory) Neural Network

Rs.1,177.06 and prices ranged from Rs.598.33 to
Rs.12,100 per quintal. The larger price range
suggested that the Puna variety was more susceptible
to price spikes, potentially due to market preferences,
storage differences, or supply chain factors. The higher
average and greater standard deviation for Puna onions
indicated that the variety fetched a premium price in
the market and experienced larger fluctuations over
time compared to the Local variety. These statistics
provided a foundational understanding of the price
behaviour of onion varieties in the Bengaluru market,
setting the stage for further analysis using time-series
forecasting models.

TABLE 1

Descriptive statistics of onion prices

Variety Time period

Local 05.07.2009 Bengaluru 788 1367.08 963.21 350.00 9800.00
-04.08.2024

Puna 05.07.20094 Bengaluru 788 1746.36 1177.06 598.33 12100.00
-04.08.202

SD Max.Market
No. of
records Mean Min.

Mysore J. Agric. Sci., 59 (2) : 195-205  (2025) MANOJKUMAR PATIL et al.
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Fig. 3 : Time plot of weekly onion prices (Rs/quintal) for Local and Puna varieties in the Bengaluru market

TABLE 2

Augmented-Dickey-Fuller (ADF) test results of
onion price series

Local -5.722 < 0.001

Puna -6.014 < 0.001

t-statistics p-value

Variety ConclusionADF Test

Stationary

The Augmented Dickey-Fuller (ADF) test results for
the price series of the Local and Puna onion varieties
are presented in Table 2. For the Local variety, the t-
statistic was -5.722 with a p-value less than 0.001,
providing strong evidence against the null hypothesis
of non-stationarity. Similarly, the Puna variety had a
t-statistic of -6.014 and a p-value below 0.001. These
results indicated that both varieties exhibited
stationarity, suggesting that the price data did not
demonstrate trends over time, making them suitable
for further time series analysis.

Fig. 3 presented the monthly average prices of the

Local and Puna onion varieties, highlighting

fluctuations in price trends over time. The data showed

that both varieties experienced price variations, with

the Puna variety consistently exhibiting higher prices

than the Local variety across all the observed months.

This persistent price differential underscored the

premium market value of the Puna variety compared
to its Local counterpart.

The time-series decomposition plots of the onion price
series into trend, seasonal, and residual components
for the Local variety and the Puna variety in the
Bengaluru market are presented in Fig. 4(a) and Fig.
4(b), respectively. Both varieties exhibited similar
fluctuating trends in their prices, indicating closely
aligned movements over time. Additionally,
seasonality was clearly observed in both price series,
reflecting recurring patterns influenced by seasonal
factors that affected onion prices. This analysis
highlighted how both varieties were subject to
comparable market dynamics and seasonal effects.)

The parameter estimates for the Holt-Winters
Exponential Smoothing (HWES) model, as shown in
Table 3, provided insights into the pricing dynamics
of Local and Puna onion varieties. For the Local
variety, the level parameter () was estimated at
0.8889, indicating a strong emphasis on recent
observations, while the Puna variety had an even
higher-level parameter of 0.9950, reflecting a greater
reliance on recent data. Both varieties exhibited
minimal trend effects, with a trend parameter () of
0.0001, suggesting little significant upward or
downward movement in prices. Additionally, the
seasonal parameter () for the Local variety was

Mysore J. Agric. Sci., 59 (2) : 195-205  (2025) MANOJKUMAR PATIL et al.
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(a) Local variety of onion price

Fig. 4 : Time-series decomposition plots of onion price series for (a) Local variety and (b) Puna variety in the Bengaluru market

Mysore J. Agric. Sci., 59 (2) : 195-205  (2025) MANOJKUMAR PATIL et al.

(b) Puna variety in the Bengaluru market
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0.0370, indicating a moderate seasonal influence,
while the Puna variety showed a weaker seasonal
effect with a  value of 0.0050. These estimates
provided valuable information about price behaviour.

The parameter estimates for the SARIMA model to
Local variety of onion, detailed in Table 4, highlighted
that the model’s ability to capture patterns within the
time series data. The autoregressive (AR) term
estimated at 0.7883 was statistically significant
indicating the relevance of past values in predicting
future prices. The moving average (MA) term had a
coefficient of -0.6639 with significant indicating the
importance of past errors in the prediction process.

As presented in Table 5, the parameter estimates for
the SARIMA model applied to onion Puna variety

TABLE 3

H-WES model parameter estimates

 (Level) 0.8889 0.9950

 (Trend) 0.0001 0.0001

 (season) 0.0370 0.0050

Local variety Puna variety
Model

parameters

Estimates

TABLE 4

Parameters estimate of the SARIMA models
for Local variety of onion

AR (1) 0.7883 0.087 9.108 ***

MA (1) -0.6639 0.103 -6.418 ***
2 0.000014 0.000001 25.711 ***

Parameter z-statisticCo-efficient Std. Error

Note: ***Significant at 1% (p < 0.01); *Significant at 10%
(p < 0.10)

TABLE 5

Parameters estimate of the SARIMA model for
Puna variety of onion

AR (1) -0.0835 0.021 -4.002 ***

AR 0.0660 0.040 1.667 *
(Seasonal L52)

AR 0.1289 0.047 2.732 ***
(Seasonal L104)
2 0.000035 0.000001 36.072 ***

Parameter z-statisticCo-efficient Std. Error

Note: ***Significant at 1% (p < 0.01); *Significant at 10%
(p < 0.10)

provided insights into the seasonal and autoregressive
patterns within the data. The autoregressive term (AR)
was estimated at -0.0835, while the seasonal
autoregressive components for lag 52 and 104 were
estimated at 0.0660 and 0.1289, respectively. These
seasonal parameters highlighted the importance of
yearly cycles in the price dynamics of Puna onion.

The comparison of forecast accuracy metrics-RMSE,
MAE and MAPE-across the SARIMA, Holt-Winters,

and LSTM models is provided in Table 6. The LSTM
model significantly outperformed the conventional
models in forecasting both Local and Puna onion
prices. For Onion Local, the LSTM model had an
RMSE of 429.58, which was substantially lower than
SARIMA (958.66) and Holt-Winters (749.25).
Similarly, for Onion Puna, the LSTM model exhibited
the best performance with an RMSE of 513.14,
compared to SARIMA (1399.16) and Holt-Winters
(669.35). These results clearly demonstrate the LSTM
model’s superior forecasting accuracy, confirming it
as the most effective approach for predicting onion
prices in the study. A similar conclusion was reached
by Zhang et al. (2024), who found that the LSTM
model achieved higher accuracy compared to several
machine learning methods, including CNN-based time
series forecasting approaches. In contrast, Mohan
Kumar et al. (2011a) identified the optimal ARIMA
model for potato price forecasting, while in a separate
analysis, they found that ARIMA outperformed Holt-
Winters for onion prices (Mohan Kumar et al., 2011b).
However, in this study, while Holt-Winters showed
better performance than SARIMA, the LSTM model
clearly surpassed both, indicating its potential as a
more effective forecasting method in this context.

The forecasting performance of the LSTM model for
onion prices was illustrated in Fig. 5 and 6 for the
Local and Puna varieties, respectively. Fig. 5 showed
the actual historical prices for the Local variety in
blue, spanning from 2008 to 2022, with the orange
line representing the model’s training predictions. The
close alignment of these lines indicated the model’s

Mysore J. Agric. Sci., 59 (2) : 195-205  (2025) MANOJKUMAR PATIL et al.
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Variety
SARIMA

Local 958.66 956.78 468.83 749.25 647.477 0.55 429.58 303.93 0.20

Puna 1399.16 1399.16 687.61 669.35 525.28 0.27 513.14 343.99 0.16

RMSE MAPE

Holt-Winters LSTM

MAE RMSE MAPEMAE RMSE MAPEMAE

Note: RMSE: Root Mean Square Error, MAE: Mean Absolute Error, MAPE: Mean Absolute Percentage Error

TABLE 6

Forecast accuracy estimates for SARIMA, Holt-Winters and LSTM

Fig. 5: Ex-Post and Ex-Ante forecasted prices (Rs/quintal) for Local onion variety in the
Bengaluru market using the LSTM model

effectiveness in capturing key trends during the
training period. Similarly, Fig. 6 displayed the
historical prices for the Puna variety, with the same
colour coding. Predictions on the test data, shown in
green for both figures, closely matched the actual
prices, further validating the model’s performance.
The similar result was observed by Ge and Wu (2020)
in maize price as the dependent variable and the LSTM
model showed much close to actual values and
forecasted prices were more accurate. The red dashed
lines represented future predictions beyond 2024,
demonstrating the model’s capability to provide
reliable forecasts for upcoming price movements.
Overall, these findings emphasized the LSTM model’s
effectiveness in forecasting the complex price
behaviour of onions, offering valuable insights for

stakeholders in the agricultural sector. Similar results
were found in the study conducted by Sabu & Kumar
(2020), Kamdem et al. (2020) and Ameur et al. (2024)
demonstrated the effectiveness of the LSTM model
as a forecasting tool for price prediction to support
decision-making in the agricultural supply chain and
minimize the risk of price fluctuations.

The vegetables play significant role in the average
Indian household’s diet, their price fluctuations
directly impact the cost of living for a large portion
of the population. The observed volatility in these
onion prices contributes not only to short-term
fluctuations in inflation but also have the potential to
influence overall food inflation rates. With this
background the study developed and compared

Mysore J. Agric. Sci., 59 (2) : 195-205  (2025) MANOJKUMAR PATIL et al.
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SARIMA, Holt-Winters and LSTM models for
forecasting onion prices, focusing on two varieties-
Local and Puna in the Bengaluru market. The results
demonstrated that while traditional models such as
SARIMA and Holt-Winters provides useful parameter
estimates, fall short in forecasting accuracy compared
to the LSTM model. The LSTM model outperformed,
offered significantly better predictions with lower
RMSE, MAE and MAPE values. Its ability to closely
align forecasts with historical price trends highlighted
its effectiveness in capturing the complex dynamics
of onion prices. Additionally, forecasts for the
upcoming weeks suggests the LSTM model’s
reliability in providing consistent and accurate
predictions. These findings suggested that LSTM is a
powerful tool for price forecasting, offering valuable
insights to farmers, traders, economists and
policymakers for formulating effective measures to
mitigate the impact of such fluctuations on inflation
and ensure food security for the population also
informed decision-making and better market planning.
To conclude, managing and predicting the volatility
of these key vegetables is crucial for maintaining
economic stability and the well-being of the Indian
populace. Understanding and forecasting the price
movements of these vegetables is crucial for

stakeholders in the agricultural and food industries to
make informed decisions and develop effective risk
management strategies.
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