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ABSTRACT

R. RaviKuMaRra : The mulberry (Morus sp.) with its perennial nature and appropriate pruning methods,

Conce':ptualization,. is more suitable for intercropping with coconut plantations, wherein wider space shall
experiment execution,

collection of data & analysis
and preparation of

be utilized to gain an additional income per unit area. But the challenging task is that
existing mulberry varieties, except Sahana are found unsuitable for cultivating as

manuscript intercrops under coconut palms because of shade stress not only limits the growth and

productivity of mulberries but also affects the nutritional value of foliage to use them
H. B. MANJUNATHA ° as food for the silkworm, Bombyx mori. To overcome this constraint, a productive
Supervision, data curation shade-tolerant mulberry variety is needed. To achieve this, fourteen mulberry genotypes
and draft correction were evaluated for their performance under partial shade (under coconut palms) and

full sunlight (open field). The results revealed that mulberry genotypes grown under
partial shade exhibited differential responses as shade-tolerance, shade-avoidance,
and shade-intolerance syndromes. Characteristically, shade-tolerant mulberry genotypes
(CS-3, CS-6, CS-7 and Sahana) have been shown to have statistically non-significant
variation between open and partially shaded conditions in morphological, anatomical,
Corresponding Author : biochemical and physiological traits, albeit leaf yield and quality production are
consistent with those of full sunlight conditions. In contrast, shade-avoidant genotypes
like CS-1, CS-4, CS-5, CS-9, CS-10, CS-11, M-5 and V-1 exhibited significant
phenotypic plasticity in the above-stated traits, although their leaf yield and quality
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were considerably reduced under partial shade. The shade-intolerant genotypes, CS-2
and CS-8, demonstrated neither tolerance nor avoidance of shade and showed significant
reductions in almost all traits studied, except for leaf petiole and internodal length.
Furthermore, the shade-tolerant genotype CS-6 showed high resistance to powdery
mildew, while CS-3, CS-7 and Sahana exhibited moderate resistance. Comparatively,
the shade-avoidance (CS-1, CS-4, CS-5, CS-9, CS-10, CS-11, M-5, and V-1) and
shade-intolerant (CS-2 and CS-8) genotypes were found to be more susceptible to the

Received : December 2024 diseases under shade conditions. Notably, CS-6 displayed the highest leafyield (405.43

Accepted : June 2025 g/harvest/plant) under shade, making it a promising candidate for intercropping in
coconut plantations and a valuable resource for breeding programmes.

Keywords : Coconut orchards, Intercrop, Mulberry, Phenotypic plasticity, Shade-tolerance

HE mulberry (Morus spp.: Moraceae), by and traditional sericulture belts of South India, it is often
large, is being cultivated as a monocrop in grown as an intercrop with various horticultural
sericulture-practicing countries and has been in use (e.g., coconut, areca nut, mango, sapota, guava,
as feed for the monophagous silkworm, Bombyx mori, pomegranate) and forestry (e.g., sandal, Malabar
for the production of cocoons/silk. However, in the neem, teak, silver oak) plants, while intercropping of
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mulberry with coconut palm has become the most
popular one (Babu et al., 2006 & Kumara et al., 2024).
The height of the coconut trees and the orientation of
their leaves allow between 20 and 50 per cent of
sunlight to reach the ground, creating a suitable
environment for growing other annual and perennial
plants, including mulberry (Nelliat ef al., 1974). The
intercropping practice is considered an efficient
system for resource utilization, ensuring better use of
space, soil and water, provided the selection of the
crop is appropriate (Singh and Datta, 2006 and Roopa
et al., 2022). Mulberry has been recommended as an
intercrop in coconut orchards due to its lifespan of
15-25 years, providing a consistent source of income
and acting as a financial buffer against fluctuating
coconut prices (Dias, 1989). Besides, mulberry
cultivation in coconut orchards offers ecological
benefits, such as improving soil health and
maintaining overall productivity (Reshma ez al., 2019
and John et al., 2019). Despite these advantages,
productivity and income from mulberry cultivation
are invariably higher in open gardens compared to
the shaded conditions of coconut (Shankar ez al., 1998
and Meerabai et al., 2000). This is primarily because
existing mulberry genotypes not only exhibit reduced
leaf thickness under shade but also directly affect the
yield and quality of the leaves (Babu et al., 2006).
Additionally, mulberry plants grown under shade are
more susceptible to foliar diseases, powdery mildew
in particular and infestation of mealy bugs, which
decline the quantity and quality of the leaves for
silkworm rearing (Gupta, 2001). While intercropping
of mulberry with coconut offers numerous ecological
and economic benefits, optimizing shade tolerance in
mulberry genotypes is critical to improve productivity
(Shukla et al., 1989).

In this context, although quite a good number of
mulberry genotypes have been developed and
evaluated under coconut shade conditions to assess
their yield attributes and suitability for silkworm
rearing, the rate of success in the field is meager.
However, among the seven genotypes screened,
Sahana (K-2 x Kosen) and MR-2 are identified as
relatively shade-tolerant (Balakrishna et al., 2000 and

Balakrishna et al., 2002). The Sahana variety is
characterized by medium branching, fast-growth with
large, unlobed, dark green leaves and thrives well
under 40 per cent shade. It also produces 40-44 MT
of leaves/hectare/year under optimal irrigated
conditions. With this significance, the Sahana
genotype was recommended for intercropping in
coconut orchards, trees older than 25 years in
particular (Das et al., 2010 and Thippeswamy et al.,
2014), but did not reach the expectation due to its
lower leaf yield compared to the V-1, which yields
65-70 MT of leaves/hectare/year. Although the V-1
variety is shade-sensitive, it continues to be the
preferred variety in many coconut plantations. As the
Sahana genotype was derived from a hybrid of K-2
and Kosen (Balakrishna et al., 2002) and possesses a
poor yielding nature, we have explored naturally
occurring clonally derived mulberry genotypes and
analyzed them for their shade tolerance and leaf
production for commercial exploitation in the coconut
orchards.

MATERIAL AND METHODS
Plant Material

Eleven naturally occurring variants of mulberry were
collected from more than 20-year-old mulberry
gardens of the cultivar M-5 (Kanva 2) grown in
coconut orchards. These clonal selections were
carefully chosen and named as CS-1 (Clonal
Selection-1), CS-2, CS-3, CS-4, CS-5, CS-6, CS-7,
CS-8, CS-9, CS-10 and CS-11. For the screening trials,
the M-5 genotype (the original cultivar from which
the variants were derived) was used as a control, along
with the shade-tolerant genotype Sahana and the
shade-sensitive genotype Victory-1 (V-1).

Establishment and Maintenance of the Evaluation
Plot

Using Line Quantum Sensor (LI-191R), light
measurement was carried out to assess the
photosynthetically active radiation (PAR) under
coconut palm shade. The intensity of light under
the shade ranges from 48.59 per cent (657. 97 pmol
m-?s') to 51.44 per cent (697.97 umol m? s)
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recorded in open land, which was 1,356.07 pmol
m? s at 11 a.m. on a typical sunny day in June.

For experiments, six-month-old saplings were planted
following the Randomized Block Design (RBD) with
3 replications (6 plants/genotype/replication) with
3ft x 3ft spacing and grown under the mature coconut
palms canopy (variety Kalpa Samrudhi, 16 years old
with 7m x 7m spacing). Concurrently, for comparative
analysis, the same genotypes were planted in full
sunlight next to the shaded plot (Fig. 1). The
recommended package of practices was followed for
both the mulberry plots (FYM @ 20 MT and NPK @
350:140:140 kg/ha/yr) as well as coconut trees (FYM
@ 50 kg and NPK @ 500 g, 320 g, 1200 g /palm/yr).
Plants receive irrigation once every 6 days during dry
conditions. After a year of establishment, the plants
were harvested eight times at intervals of 65-70 days
following shoot pruning.

Morpho-Anatomical and Physio-Biochemical
Analysis

Morphological, growth, yield and anatomical
parameters of the mulberry were recorded following
standard protocols and descriptors (Sahay et al., 2016).
To assess the physiological parameters, the net

photosynthetic rate (Pn), stomatal conductance (gs),
transpiration rate (Tr) and intercellular CO,
concentration (Ci) were measured using 5" and 6
order leaves. All these measurements in triplicate were
recorded in the field between 10 and 11 a.m. using a
portable photosynthetic meter (Licor-6200). The
efficiency of intrinsic water use was estimated
according to Cregg et al. (2000). Biochemical analyses
were conducted using 7™ to 9" order mulberry leaves
employing standard protocols. Protein estimation was
performed following the Lowry et al. (1951) method;
carbohydrate content was estimated according to the
Plummer (1971) protocol; chlorophyll content was
determined using the method of Hiscox and Israclstam
(1979); and phenolic content was estimated as per the
Malick and Singh (1980) protocol. The statistical
analysis of the data was performed using the ‘t-test’
to compare the values of each parameter between the
shade and open conditions.

Analysis of Phenotypic Plasticity

The phenotypic plasticity index (PI) was calculated
for growth and yield, leaf anatomy, physiology and
biochemical parameters separately (Grewell et al.,
2016). The difference between the maximum and

Fig. 1 : a) Open sunlight-grown mulberry genotypes; b) Coconut shade-grown mulberry genotypes
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minimum values was divided by the maximum value
to produce the index. Higher PI values, which are
closer to one, imply that the variable is more plastic
(Cheplick, 1995). The mean plasticity index (PI) was
derived by averaging the plasticity index of individual
groups such as growth and yield, leaf anatomy,
physiology and biochemical traits.

Screening for Resistance to Powdery Mildew
Disease

Considering the natural infection of powdery mildew
(Phyllactinia corylea [Pers.] Karst), continuous
evaluation of its incidence was carried out throughout
the year using the same shade experiment plot, without
applying any control measures. For each genotype
(6 plants/genotype/replication), four branches from
different directions were selected and tagged for
observation. The total number of leaves on each
branch, along with the number of infected leaves, was
recorded to calculate the disease incidence rate. All
the infected leaves were categorized into different
grades of infection using the 0-5 grading scale as
described by Sharma and Gupta (2005). In this scale,
0=No infection, 1=0-5% leaf lamina covered by the
symptoms, 2=6—25% leaf lamina covered by the
symptoms, 3=26-50% leaf lamina covered by the
symptoms, 4=51-75% leaf lamina covered by the
symptoms, 5=76-100% leaf lamina covered by the
symptoms. Per cent of disease index (PDI) was
calculated according to the formula (McKinney,
1923).

Sum of all numerical rating

= x 100
Total no. of leaves counted

Per cent

disease index

x Maximum grade

The degree of disease resistance in mulberry
genotypes was assessed based on the Per cent
Disease Index (PDI) and classified as follows:
0 PDI = Immune/Completely Resistant, 0-5.0
PDI=Resistant, 5.1-20.0 PDI = Moderately Resistant,
20.1-50.0 PDI = Susceptible and 50.1-100
PDI = Highly Susceptible (Sharma and Gupta, 2005).

RESULTS AND DISCUSSION
Morphological Traits

In full sunlight, the leaf color of mulberry genotypes
varied significantly across different genotypes. For
instance, CS-1 had light green leaves with a strongly
glossy surface, while CS-6 exhibited green leaves with
a strongly glossy texture (Fig. 2¢). Genotypes like
CS-7, CS-10, Sahana and V-1 showed dark green
leaves with a glossy surface, whereas CS-2 had green
leaves with a glossy appearance (Fig. 2k) and CS-3,
CS-4 and CS-8 also displayed green leaves with a
glossy texture. M-5 and CS-9 had light green, non-
glossy leaves, while CS-5 and CS-11 exhibited dark
green leaves with a non-glossy surface (Fig. 2g). In
shade conditions, there were noticeable changes in
leaf color among the genotypes. For example, leaves
turned dark green in CS-1, CS-3, CS-4, CS-6, CS-9,
and M-5. In contrast, no significant changes in leaf
color were observed in CS-2, CS-8 and Sahana,
although the glossiness of leaves disappeared in
CS-2, CS-8 and V-1 under shaded conditions.

Fig. 2 : Shade-tolerant genotype, CS-6: a) Full sunlight-grown
plant and its leaf (c), b) Shade-grown plant and its
leaf (d); Shade-avoidance genotype, CS-5: e) Full
sunlight-grown plant and its leaf (g), f) Shade-grown
plant and its leaf (h); Shade-intolerant genotype,
CS-2; i) Full sunlight-grown plant and its leaf (k),
j) Shade-grown plant and its leaf (1).
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The growth habit also exhibited considerable
variability between genotypes under different light
conditions. In full sunlight, the growth nature was
erect in genotypes such as CS-1, CS-2 (Fig. 2i),
CS-3, CS-4, CS-6 (Fig. 2a), CS-7, CS-10, CS-11,
M-5 and V-1. Sahana and CS-9 displayed a semi-erect
growth habit, while CS-5 had a spreading growth form
(Fig. 2e). Under shaded conditions, several genotypes
displayed a shift towards a spreading growth habit,
including CS-1, CS-3, CS-4, CS-9, CS-10, CS-11,
M-5 and V-1, indicating a plastic response to reduced
light availability. However, the growth form remained
constant in CS-3, CS-6 (Fig. 2), CS-7 and Sahana,
which exhibited the same growth pattern regardless
of the light conditions.

Growth, Yield and Anatomical Features

Significant variability was observed for growth and
yield traits between mulberry genotypes grown in open
versus shaded conditions. Traits such as plant height,
shoot girth, number of branches per plant, internodal
distance, petiole length, leaf area, leaf-specific weight,
leaf moisture content and its retention capacity showed
notable differences between plants grown in shaded
and open environments (Table 1). Similarly, key leaf
anatomical traits (Fig. 3), including leaf thickness,

Fig. 3 : Stomatal view of CS-6 (a), CS-5 (b) and CS-2 (C)
genotypes; Leaf cross sectional view of CS-6 (d), CS-5
(e) and CS-2 (f) genotypes; Leaves of powdery mildew
resistant (g: CS-6), moderately resistant (h: CS-3) and
highly susceptible (i: CS-1) genotypes

spongy tissue thickness, upper cuticle thickness,
stomatal number, chloroplast number, stomatal size,
and trichome density, demonstrated significant
plasticity (Table 2).

Interestingly, four genotypes, viz., CS-3, CS-6, CS-7,
and Sahana, showed better leaf yield under shaded
conditions among the 14 genotypes with similar
performance observed for these same genotypes in
open conditions. Notably, the CS-6 genotype
demonstrated exceptional performance under shaded
conditions, achieving a leaf yield of 405.43 g per
plant/harvest, which was 30.33 per cent higher than
the shade-tolerant variety Sahana. Additionally, CS-6
consistently exhibited the highest leaf thickness of
162.29 um under shade conditions compared to the
other genotypes. Importantly, the leaf yield and leaf
thickness in CS-6 were more consistent across both
shaded and open conditions. Under full sunlight,
however, the V-1 variety out performed others,
producing the highest leaf yield of 541.90 g per plant,
though it showed inferior performance in shaded
environments.

Physio-Biochemical Characteristics

The CS-6 emerged as the top performer under shaded
conditions, exhibiting the highest values across several
key parameters, which include a net photosynthetic
rate of 13.16 pmol (CO,) m? s, water use efficiency
(WUE) of 23.97 umol (CO,) mmol™ (H,0), stomatal
conductance 0f 26.9 mol m? s and intercellular CO,
concentration of 6.11 umol (CO,) m? s (Table 3).
The biochemical content of protein, carbohydrates,
phenol and chlorophyll in the leaves of CS-1, CS-2,
CS-5,CS-8,CS-9, CS-10, CS-11, M-5 and V-1 grown
in open and shade-grown conditions revealed
significant variability. However, no significant
difference was noticed in the genotypes CS-3, CS-6,
CS-7 and Sahana, as they are more stable in their
biochemical composition regardless of light
availability (Table 4).

Phenotypic Plasticity Index

The expression of phenotypic plasticity recorded was
highest in the genotypes CS-1, CS-2, CS-4, CS-5,
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CS-9, CS-10, CS-11, M-5 and V-1 and low in CS-2
and CS-8. Notably, there was no expression of
phenotypic plasticity in the shade-tolerant genotypes
such as CS-3, CS-6, CS-7 and Sahana, depicting stable
phenotypic traits regardless of shading condition.
Among the various traits analyzed, the growth and
yield traits exhibited the highest plasticity index of
0.25, followed by physiological traits at 0.24, leaf
anatomical traits at 0.22 and biochemical traits at 0.21

(Fig. 4).
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Fig. 4 : Boxplots showing phenotypic plasticity index (PI)
distribution for each of the measured traits among the
four identified groups.

Screening for Resistance to Powdery Mildew

Screening was conducted on eleven clonally selected
genotypes (CS-1 to CS-11), along with the M-5, V-1,
and Sahana varieties, under coconut palms to assess
their resistance to the fungal pathogen Phyllactinia
corylea (Pers.) Karst. Disease occurrence was
observed from July to March in the shade plot, while
in the open mulberry garden, it was recorded from
November to February during the study period. The
percentage of disease index (PDI) was used to evaluate
the degree of resistance. The results revealed that
CS-6 exhibited high resistance to powdery mildew

(Fig. 3g), with a PDI of 2.37. Genotypes CS-3, CS-7,
and Sahana displayed moderate resistance (Fig. 3h),
with PDI values ranging from 8.42 to 18.51. In
contrast, CS-1, CS-2, CS-4, CS-5, CS-8, CS-9,
CS-10, CS-11, M-5 and V-1 were highly susceptible
(Fig. 31), with PDI values ranging from 54.16 to 82.27
(Table 5)

TABLE 5

Disease responses in different
mulberry genotypes

Per cent
Genotypes Disease Disease response
Index (PDI)

CS-1 64.23 Highly susceptible
CS-2 54.16 Highly susceptible
CS-3 16.29 Moderately resistant
CS-4 74.11 Highly susceptible
CS-5 59.64 Highly susceptible
CS-6 2.37 Resistant
CS-7 8.42 Moderately resistant
CS-8 71.36 Highly susceptible
CS-9 88.27 Highly susceptible
CS-10 77.92 Highly susceptible
CS-11 68.41 Highly susceptible
M-5 55.74 Highly susceptible
Sahana 18.51 Moderately resistant
V-1 73.54 Highly susceptible

Shade tolerance is known for plants’ ability to survive
and thrive under low light conditions (Lambers ef al.,
1998). In natural environments, shade is primarily
caused by two signaling factors: a low proportion
of red light to far-red light (R:FR) and low
photosynthetically active radiation (PAR) (Franklin
and Whitelam, 2005 and Vandenbussche et al., 2005).
All plants can acclimatize to shaded environments,
altering their growth strategies to make the most use
of the available light (Lambers et al., 1998). In coconut
plantations, the amount of light reaching the ground
changes significantly over time. During the first five
years, the area beneath the coconut canopy receives
the maximum amount of solar energy and as the
coconut trees mature, they cast increasingly intense
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shade. By attaining 20 years of age, dense shading
severely limits the growth of other plants and at 50
years, the canopy height allows enough light for the
cultivation of intercrops. The other important factor
for intercropping is the root distribution of the coconut
trees, typically confined to a 2-meter radius around
the base or about 25 per cent of the total area. This
limited root spread leaves 75-80 per cent of the land
area available for farming other crops, such as
mulberry, which can take advantage of the less shaded
and root-restricted spaces (Bavappa et al., 1986).
Considering these advantages and using ~75-80
per cent of the land area available under the coconut
plantation, we have made a systematic investigation
not only to identify naturally occurring mulberry
variants but also to evaluate their potential, which can
survive and thrive under low light conditions to
propagate them as intercropping.

A set of eleven naturally occurring variants of
mulberry with respect to morphometric traits
(Basavaiah et al., 1994 and Dandin et al., 1996),
named CS-1, CS-2, CS-3, CS-4, CS-5, CS-6,
CS-7, CS-8, CS-9, CS-10 and CS-11, was evaluated.
All these mulberry genotypes, including control
genotypes (M-5, Sahana and V-1) grown under open
and shade conditions, exhibit varied responses and
are accordingly categorized as shade-tolerant (CS-3,
CS-6, CS-7 and Sahana), shade-avoidant (CS-1,
CS-4, CS-5, CS-9, CS-10, CS-11, M-5 and V-1) and
shade-intolerant (CS-2 and CS-8).

Shade Tolerance

The shade tolerance exhibited by the mulberry
genotypes CS-3, CS-6, CS-7 and Sahana with stability
in morphology, growth and productivity explicit that
these have evolved with specific adaptations to thrive
under shade stress. Notably, as there was no variability
in leaf color, leaf surface or growth habit when grown
under partial shade compared to full sunlight, it depicts
these plants did not undergo significant changes in
their structure or growth patterns due to reduced light.
However, the ability of these genotypes to maintain
consistent performance in low light conditions is
largely due to several key anatomical and

physiological traits (Valladares and Niinemets, 2008).
For instance, these shade-tolerant genotypes display
more leaf thickness with thicker cuticles and spongy
parenchyma tissues, which are likely to contribute to
enhanced light absorption and water retention (Beck,
2010 and Ni et al., 2015). The higher number of
chloroplasts in the stomata suggests that these plants
are better equipped for photosynthesis in lower light
conditions, while the lower number of trichomes on
the leaf surface may help reduce water loss and light
reflection. These anatomical features are consistent
with findings by Babu et al. (2006), who also
identified similar adaptive traits for shade tolerance
in mulberry genotypes. Furthermore, to adapt to the
low irradiance in shaded environments, shade-tolerant
genotypes like CS-3, CS-6, CS-7 and Sahana have
been shown to increase their net photosynthetic rate.
This is achieved by higher levels of chlorophyll, which
enhances light absorption, as well as stronger
antioxidant activities that help mitigate oxidative
stress under reduced light (Ganguly et al., 2020).
These anatomical and physiological modifications
collectively make these genotypes highly efficient in
utilizing available light and resources to ensure
success under partial shade.

However, the mechanisms underlying high-yielding
ability under shade can vary significantly between
different mulberry varieties or genotypes (Balakrishna
et al., 2000 and Babu et al., 2006). This suggests that
while some genotypes are well-adapted to shaded
environments, the degree of adaptation and the
specific mechanisms that confer shade tolerance may
differ across genotypes. In line with this, shade-
tolerant mulberry genotypes such as CS-3, CS-6,
CS-7 and Sahana have been found to exhibit a lower
reduction in leaf biochemical parameters such as
proteins, carbohydrates and phenols under coconut
shade conditions compared to shade-susceptible
genotypes. These biochemical parameters are critical
for maintaining plant growth and productivity and
their relative stability under shaded conditions
(Luigi et al., 2022).

One such important biochemical factor is the level of
phenolic compounds in the leaves. Phenolics play a
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key role in plant defence mechanisms, but they also
impact photosynthetic performance. Under shade, an
imbalance between the supply and demand for
photosynthetic electrons can trigger the accumulation
of phenolic compounds as a stress response. According
to Zhang et al. (2018), this imbalance in the electron
transport chain can lead to an increase in phenolic
production, potentially reducing the efficiency of
photosynthesis if the levels become too high.
However, in shade-tolerant genotypes like CS-3,
CS-6, CS-7 and Sahana, the relatively lower reduction
in biochemical parameters, including phenols,
suggests that these genotypes are better equipped to
maintain metabolic balance and photosynthetic
efficiency under reduced light conditions. This could
be an important factor contributing to their higher
overall productivity under shade, as they can maintain
critical physiological functions even in less-than-ideal
light environments. Therefore, understanding how
different mulberry genotypes manage biochemical
compounds like phenolic accumulation under shade
can provide valuable insights for selecting cultivars
that are both productive and resilient under varying
light conditions (Zhang et al., 2018).

Shade Avoidance

Often, plants exhibit shade avoidance syndrome, a
strategy where they grow taller or increase
photosynthetic efficiency to escape shade and capture
more light (Mousset et al., 2021). The shade-avoidant
genotypes of mulberry (CS-1, CS-4, CS-5, CS-9,
CS-10, CS-11, M-5 and V-1) exhibit a higher degree
of phenotypic plasticity by altering their
morphological and physiological traits in response to
varying light conditions (Alpert and Simms, 2002).
These include increased shoot length due to inter-node
elongation, enhanced petiole growth, increased apical
dominance, reduced branching and a higher leaf area
to biomass ratio. These traits allow the plant to grow
taller and spread its leaves more effectively, improving
its chances of reaching light above the canopy in
shaded environments (Niinemets, 2010 and Van
Kleunen et al., 2011). The mechanisms behind these
alterations are complex and involve various
photoreceptors and phytohormones, which regulate

the plant’s response to light. The photoreceptors -
phytochromes and cryptochromes - detect the quality
and intensity of light, which in turn triggers hormonal
signals. These signals, involving key hormones like
auxins and gibberellins, coordinate the changes in
growth patterns such as elongation and leaf expansion
(Ballare and Pierik, 2017).

In response to shade, many plants, including mulberry,
typically develop smaller and thinner leaves, but in
these genotypes, the increased leaf area and changes
in stomatal density reflect anatomical plasticity,
allowing better gas exchange and light capture under
reduced light conditions (Terashima et al., 2001 and
Kumara et al., 2021). Additionally, these shade-
avoidant genotypes show improved leaf color, which
correlates with a higher number of chloroplasts and
chlorophyll concentration, indicating enhanced
photosynthetic capacity. In shaded environments,
chlorophyll-b accumulates more preferentially than
chlorophyll-a, helping the plant adjust its light-
harvesting mechanisms (Koike et al., 2001).
Chlorophyll b is a crucial component of the light-
harvesting complex (LHC), which aids in capturing
and transmitting light energy to the photosystem II
(PSII) reaction center, optimizing photosynthesis even
in low light (Lam et al., 1984). Studies, such as those
by Huang et al. (2011), have shown that shaded leaves
can enhance their photosynthetic efficiency by
utilizing LHC II to capture more light energy, making
shade-avoidant genotypes more adaptable and
efficient in light-limited environments. Through these
combined physiological and developmental
mechanisms, mulberries exhibiting shade avoidance
are able to optimize their growth in response to
shading, ensuring better light capture and maximizing
their photosynthetic efficiency under low-light
conditions (Mousset et al., 2021).

Shade Intolerance

The shade-intolerant mulberry genotypes CS-2 and
CS-8 exhibit significant reductions in growth and
development when exposed to low light, reflecting
their inability to deploy effective tolerance or
avoidance mechanisms under shade conditions. These
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genotypes fail to adapt to low-light environments,
leading to a decrease in their net carbon gain and
overall growth (Lambers et al., 1998). As a result,
photosynthesis is severely affected, contributing to a
stress response that impacts various physiological
processes. Low light levels hinder the rates of
anticlinal cell expansion, which affects leaf thickness,
with leaves becoming thinner due to a reduction in
both cell growth and cell division. In particular, the
number of palisade cells, a layer of cells responsible
for light absorption and photosynthesis, decreases
because of the impaired cell division (Kalve et al.,
2014). This reduction in cell layers further contributes
to the structural limitations of the leaf. Thinner leaves,
as observed in CS-2 and CS-8, tend to have lower
leaf dry mass per unit area (Terashima et al., 2011).
However, this trait is not beneficial for these genotypes
under shade stress. The thinner leaves of CS-2 and
CS-8 contain fewer chloroplasts and have thinner
palisade tissue, which limits their ability to conduct
efficient photosynthesis and CO, transport (Terashima
et al., 2011). These structural limitations reduce the
capacity of the leaves to accumulate biomass, resulting
in poor overall plant growth. Additionally, the reduced
leaf thickness impacts carbon fixation and the ability
to store energy, further compound the negative effects
of low light. Moreover, carbohydrate concentrations
in leaves can influence leaf structure. Research has
shown that higher sucrose levels in leaves can lead to
an increase in the number of palisade cell layers, which
may help improve light capture and photosynthetic
efficiency (Terashima et al., 2006). However, in shade-
intolerant genotypes, the lower light availability
combined with reductions in soluble carbohydrates
results in a lower specific leaf area (SLA) and poor
leaf structure (Lambers and Poorter, 2004). When light
deprivation exceeds 50 per cent, a significant
reduction in soluble protein concentrations is also
observed in shaded leaves. This reduction in soluble
proteins is associated with decreased activity in
enzymes critical for nitrogen metabolism, such as
nitrate reductase, glutamine synthetase and glutamate
synthetase, all of which are essential for the plant’s
ability to synthesize amino acids and support growth
(Wang et al., 2020).

The molecular mechanisms underlying shade
tolerance, shade avoidance and shade intolerance in
mulberry genotypes involve distinct pathways
regulating light perception, growth and metabolic
processes (Martinez-Garcia and Rodriguez-
Concepcion, 2023). Shade-tolerant genotypes, like
CS-3, CS-6, CS-7 and Sahana, exhibit upregulated
genes involved in chlorophyll biosynthesis,
antioxidant defense and stress-responsive pathways,
which help maintain photosynthetic efficiency and
metabolic stability under low light (Hay et al., 2014;
Molina-Contreras et al., 2019 and Eghbal et al., 2024).
Shade-avoidant genotypes, such as CS-1, CS-4,
CS-5,CS-9, CS-10, CS-11, M-5 and V-1, rely on light
perception genes and growth regulators to promote
elongation and optimize photosynthesis by enhancing
chlorophyll production and leafarea (Hay et al., 2014;
Molina-Contreras et al., 2019 and Eghbal et al., 2024).
In contrast, shade-intolerant genotypes, like CS-2 and
CS-8, show reduced expression of photosynthesis-
related genes, impaired cell division and decreased
carbohydrate metabolism, leading to lower
photosynthetic capacity and poor growth under shade
(Zhang et al., 2020). These molecular pathways
determine each genotype’s ability to adapt to varying
light conditions.

Powdery Mildew Resistance

The powdery mildew (Phyllactinia corylea), a major
foliar disease affecting mulberry plants, thrives well
under low light intensity and high relative humidity
common in shade environments (Austin et al., 2011).
This fungal disease disrupts the host plant’s metabolic
processes, leading to a reduced moisture content in
infected leaves. These changes decrease the nutritional
value and yield of the leaves and in severe cases, the
disease can cause loss up to 20 per cent of the mulberry
foliage (Gupta, 2001). More importantly, the disease
significantly impacts the quality of the leaves
(Manimegalai and Chandramohan, 2007). Powdery
mildew incidence is most prevalent during the cooler
months, particularly from September to March with
peak infections occurring between January and
February (Krishna Prasad and Siddaramaiah, 1979 and
Biswas et al., 1992). In the study, powdery mildew
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infection was observed throughout the year in
mulberry genotypes grown under shade, indicating
that the disease can persist even in conditions where
light is limited. However, the disease resistance varied
significantly across genotypes. Among the genotypes
tested, CS-6 exhibited strong resistance to powdery
mildew, while CS-3, CS-7 and Sahana showed
moderate resistance. On the other hand, genotypes
such as CS-2, CS-4, CS-5, CS-8, CS-9, CS-10,
CS-11, M-5 and V-1 were highly susceptible to the
disease. Interestingly, the leaf and cuticular thickness
in certain genotypes, particularly the shade-tolerant
ones like CS-3, CS-6, CS-7 and Sahana, were linked
to increased resistance to powdery mildew. Thicker
leaf cuticles are believed to act as a physical barrier
against fungal infection, as they can limit the
attachment and spread of spores (Commenil et al.,
1997). The resistance observed in CS-6 is particularly
notable because it represents a genetic resistance,
which is often considered the most sustainable and
cost-effective method of controlling diseases like
powdery mildew (Chattopadhyay et al., 2011). By
relying on genetic resistance, mulberry cultivation can
reduce the need for chemical treatments, making it a
more environmentally friendly and economically
viable strategy in the long term.

Recognizing the availability of land in coconut
plantations, although root distribution is confined to
a 2-meter radius around the base or about 25 per cent
of the total area and leaves 75-80 per cent of the land
area for farming, the limiting factor is light and the
need for a shade-tolerant mulberry variety with high
yield and quality of leaves under reduced light. Among
three promising shade-tolerant genotypes, CS-6
emerged as the highest-performing genotype with the
highest leaf yield of 405.43 g/harvest and good leaf
quality under up to 51 per cent shade. In addition,
CS-6 exhibited resistance to powdery mildew, making
it particularly valuable for cultivation in shaded
environments. Having these significances, CS-6 shall
be a potential mulberry variety for commercial
exploitation and use as a genetic resource in breeding
programmes to evolve greater shade-tolerant mulberry
cultivars towards sustainable mulberry production
even in an environment with less-than-ideal light

conditions. The ability to cultivate CS-6 in these
conditions opens the door for sustainable fodder
production, as its leaves can serve as high-quality feed
for livestock (Reshma and Asha, 2018).
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